157 lines
5.5 KiB
Python
157 lines
5.5 KiB
Python
import json
|
||
from openai import OpenAI
|
||
import time
|
||
import os
|
||
from tqdm import tqdm
|
||
import pandas as pd
|
||
import re
|
||
import concurrent.futures
|
||
import threading
|
||
|
||
API_KEY="sk-oYh3Xrhg8oDY2gW02c966f31C84449Ad86F9Cd9dF6E64a8d"
|
||
BASE_URL="https://vip.apiyi.com/v1"
|
||
MODEL_DEEPSEEK_V3 = "deepseek-chat"
|
||
CATEGORIES = ['Physics', 'Chemistry', 'Biological', 'Unknown']
|
||
|
||
# Thread-local storage for OpenAI clients
|
||
local = threading.local()
|
||
|
||
# Lock for thread-safe operations
|
||
write_lock = threading.Lock()
|
||
progress_lock = threading.Lock()
|
||
processed_count = 0
|
||
category_counts = {'Physics': 0, 'Chemistry': 0, 'Biological': 0, 'Unknown': 0}
|
||
|
||
# 加载JSON数据
|
||
def load_data(file_path):
|
||
with open(file_path, 'r', encoding='utf-8') as f:
|
||
data = json.load(f)
|
||
return data
|
||
|
||
def get_client():
|
||
"""Get thread-local OpenAI client"""
|
||
if not hasattr(local, 'client'):
|
||
local.client = OpenAI(api_key=API_KEY, base_url=BASE_URL)
|
||
return local.client
|
||
|
||
def classify_question(idx, total_len, question, options):
|
||
prompt = f"""
|
||
Please classify the given question into one of these three categories: 'Physics', 'Chemistry', 'Biological' or 'Unknown'.\n
|
||
Please format your response by wrapping the category name with the tags [CATEGORY] and [/CATEGORY]. For example, your response should look like one of these:\n
|
||
- [CATEGORY]Physics[/CATEGORY]
|
||
- [CATEGORY]Chemistry[/CATEGORY]
|
||
- [CATEGORY]Biological[/CATEGORY]
|
||
- [CATEGORY]Unknown[/CATEGORY]
|
||
Question: {question}\n
|
||
Options: {options}\n
|
||
"""
|
||
|
||
client = get_client()
|
||
# 重试机制
|
||
max_retries = 3
|
||
for attempt in range(max_retries):
|
||
try:
|
||
response = client.chat.completions.create(
|
||
model=MODEL_DEEPSEEK_V3,
|
||
messages=[
|
||
{"role": "system", "content": "You are a helpful educational assistant."},
|
||
{"role": "user", "content": prompt}
|
||
],
|
||
temperature=0.3,
|
||
stream=False,
|
||
)
|
||
classification = response.choices[0].message.content.strip()
|
||
extracted_category = string_extraction(idx, total_len, classification)
|
||
if extracted_category in CATEGORIES:
|
||
return extracted_category
|
||
else:
|
||
with progress_lock:
|
||
print(f"Invalid category '{extracted_category}' returned. Retrying. {attempt + 1}/{max_retries}")
|
||
continue
|
||
except Exception as e:
|
||
with progress_lock:
|
||
print(f"Error on attempt {attempt + 1}/{max_retries}: {e}")
|
||
if attempt == max_retries - 1:
|
||
return 'Error' # 如果达到最大重试次数,返回错误
|
||
|
||
# 在重试之前等待
|
||
time.sleep(2)
|
||
|
||
return 'Error'
|
||
|
||
def string_extraction(idx, total_len, classification):
|
||
pattern = r'\[CATEGORY\](.*?)\[\/CATEGORY\]'
|
||
match = re.search(pattern, classification)
|
||
extracted = match.group(1) if match else 'Unknown'
|
||
|
||
with progress_lock:
|
||
print(f"{idx + 1}/{total_len}: {extracted}")
|
||
|
||
return extracted
|
||
|
||
def process_item(args):
|
||
idx, total_len, item = args
|
||
question = item.get('question', '')
|
||
text = item['choices']['text']
|
||
label = item['choices']['label']
|
||
formatted_choices = " ".join([f"({lbl}) {txt}" for lbl, txt in zip(label, text)])
|
||
|
||
classification = classify_question(idx, total_len, question, formatted_choices)
|
||
|
||
# 添加分类结果
|
||
item_with_classification = item.copy()
|
||
item_with_classification['subject_category'] = classification
|
||
|
||
# Update global counters
|
||
global processed_count
|
||
with write_lock:
|
||
processed_count += 1
|
||
category_counts[classification] += 1
|
||
|
||
# 每处理100个问题,打印一次中间结果
|
||
if processed_count % 100 == 0:
|
||
print(f"\nProcessed {processed_count} questions. Current distribution:")
|
||
for category, count in category_counts.items():
|
||
print(f"{category}: {count}")
|
||
|
||
# API速率限制处理 - 减少sleep时间,因为多线程已经提供了自然的延迟
|
||
time.sleep(0.1)
|
||
|
||
return item_with_classification
|
||
|
||
def main():
|
||
# 加载数据
|
||
file_path = '/home/ubuntu/50T/fsy/MatBench/layer1/ALL-merge/merged.json'
|
||
data = load_data(file_path)
|
||
data_length = len(data)
|
||
|
||
results = []
|
||
|
||
# 创建参数列表
|
||
args_list = [(i, data_length, item) for i, item in enumerate(data)]
|
||
|
||
# 设定线程数,根据实际API限制和服务器性能调整
|
||
num_threads = 10 # 根据需要调整线程数
|
||
|
||
print(f"Starting classification with {num_threads} threads...")
|
||
|
||
# 使用ThreadPoolExecutor进行并行处理
|
||
with concurrent.futures.ThreadPoolExecutor(max_workers=num_threads) as executor:
|
||
# 使用tqdm来显示进度
|
||
futures = list(tqdm(executor.map(process_item, args_list), total=data_length, desc="Classifying questions"))
|
||
results = futures
|
||
|
||
# 保存最终结果
|
||
with open('/home/ubuntu/50T/fsy/MatBench/layer1/ALL-merge/merged_classified.json', 'w', encoding='utf-8') as f:
|
||
json.dump(results, f, ensure_ascii=False, indent=4)
|
||
|
||
# 分析结果
|
||
df = pd.DataFrame(results)
|
||
category_counts_final = df['subject_category'].value_counts()
|
||
print("\nFinal distribution of questions by category:")
|
||
print(category_counts_final)
|
||
|
||
print("\nTask completed. Results saved to '/home/ubuntu/50T/fsy/MatBench/layer1/ALL-merge/merged_classified.json'")
|
||
|
||
if __name__ == "__main__":
|
||
main() |