45 lines
1.6 KiB
Python
45 lines
1.6 KiB
Python
import json
|
|
|
|
def generate_labels(choice_count):
|
|
# 根据选项数量生成 A-Z
|
|
return [chr(ord('A') + i) for i in range(choice_count)]
|
|
|
|
# 将数字答案转换为字母答案
|
|
def convert_answer_to_letter(answer):
|
|
return chr(ord('A') + answer)
|
|
|
|
def transform_json(file_path):
|
|
with open(file_path, 'r', encoding='utf-8') as f:
|
|
data = json.load(f)
|
|
|
|
new_json=[]
|
|
|
|
for i,item in data.items():
|
|
question = item["question"]
|
|
choices = item["choices"]
|
|
answer_index = item["answer"]
|
|
|
|
new_choices = {
|
|
"text": choices,
|
|
"label": generate_labels(len(choices))
|
|
}
|
|
transformed_answer = convert_answer_to_letter(answer_index)
|
|
|
|
# 构造新的 JSON 数据
|
|
transformed_data = {
|
|
"question": question,
|
|
"choices":new_choices,
|
|
"answer": f"[ANSWER]{transformed_answer}[/ANSWER]",
|
|
"prompt":"You MUST include the letter(s) of the correct answer (separated by comma if there are many) within the following tags: [ANSWER] and [/ANSWER]. No explanations and other information. Only return the '[ANSWER]<answer>[/ANSWER]'. We require this because we use automatic parsing."
|
|
|
|
}
|
|
new_json.append(transformed_data)
|
|
|
|
return new_json
|
|
|
|
input_path = '/home/ubuntu/50T/fsy/benchmark-dataset-third/ALL/ScienceQA-mat-noimage.json'
|
|
output_path = '/home/ubuntu/50T/fsy/benchmark-dataset-third/ALL/11-ScienceQA.json'
|
|
transformed_data = transform_json(input_path)
|
|
|
|
with open(output_path, 'w', encoding='utf-8') as f:
|
|
json.dump(transformed_data, f, ensure_ascii= False, indent=2) |