[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot]
2025-03-24 13:41:27 +00:00
committed by Michel Aractingi
parent 2abbd60a0d
commit 0ea27704f6
123 changed files with 1161 additions and 3425 deletions

View File

@@ -14,16 +14,16 @@
# See the License for the specific language governing permissions and
# limitations under the License.
import functools
import io
import os
import pickle
from typing import Any, Callable, Optional, Sequence, TypedDict
import io
import torch
import torch.nn.functional as F # noqa: N812
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
import os
import pickle
class Transition(TypedDict):
@@ -45,38 +45,27 @@ class BatchTransition(TypedDict):
truncated: torch.Tensor
def move_transition_to_device(
transition: Transition, device: str = "cpu"
) -> Transition:
def move_transition_to_device(transition: Transition, device: str = "cpu") -> Transition:
# Move state tensors to CPU
device = torch.device(device)
transition["state"] = {
key: val.to(device, non_blocking=device.type == "cuda")
for key, val in transition["state"].items()
key: val.to(device, non_blocking=device.type == "cuda") for key, val in transition["state"].items()
}
# Move action to CPU
transition["action"] = transition["action"].to(
device, non_blocking=device.type == "cuda"
)
transition["action"] = transition["action"].to(device, non_blocking=device.type == "cuda")
# No need to move reward or done, as they are float and bool
# No need to move reward or done, as they are float and bool
if isinstance(transition["reward"], torch.Tensor):
transition["reward"] = transition["reward"].to(
device=device, non_blocking=device.type == "cuda"
)
transition["reward"] = transition["reward"].to(device=device, non_blocking=device.type == "cuda")
if isinstance(transition["done"], torch.Tensor):
transition["done"] = transition["done"].to(
device, non_blocking=device.type == "cuda"
)
transition["done"] = transition["done"].to(device, non_blocking=device.type == "cuda")
if isinstance(transition["truncated"], torch.Tensor):
transition["truncated"] = transition["truncated"].to(
device, non_blocking=device.type == "cuda"
)
transition["truncated"] = transition["truncated"].to(device, non_blocking=device.type == "cuda")
# Move next_state tensors to CPU
transition["next_state"] = {
@@ -100,10 +89,7 @@ def move_state_dict_to_device(state_dict, device="cpu"):
if isinstance(state_dict, torch.Tensor):
return state_dict.to(device)
elif isinstance(state_dict, dict):
return {
k: move_state_dict_to_device(v, device=device)
for k, v in state_dict.items()
}
return {k: move_state_dict_to_device(v, device=device) for k, v in state_dict.items()}
elif isinstance(state_dict, list):
return [move_state_dict_to_device(v, device=device) for v in state_dict]
elif isinstance(state_dict, tuple):
@@ -174,9 +160,7 @@ def random_crop_vectorized(images: torch.Tensor, output_size: tuple) -> torch.Te
images_hwcn = images.permute(0, 2, 3, 1) # (B, H, W, C)
# Gather pixels
cropped_hwcn = images_hwcn[
torch.arange(B, device=images.device).view(B, 1, 1), rows, cols, :
]
cropped_hwcn = images_hwcn[torch.arange(B, device=images.device).view(B, 1, 1), rows, cols, :]
# cropped_hwcn => (B, crop_h, crop_w, C)
cropped = cropped_hwcn.permute(0, 3, 1, 2) # (B, C, crop_h, crop_w)
@@ -223,9 +207,7 @@ class ReplayBuffer:
self.optimize_memory = optimize_memory
# Track episode boundaries for memory optimization
self.episode_ends = torch.zeros(
capacity, dtype=torch.bool, device=storage_device
)
self.episode_ends = torch.zeros(capacity, dtype=torch.bool, device=storage_device)
# If no state_keys provided, default to an empty list
self.state_keys = state_keys if state_keys is not None else []
@@ -246,9 +228,7 @@ class ReplayBuffer:
key: torch.empty((self.capacity, *shape), device=self.storage_device)
for key, shape in state_shapes.items()
}
self.actions = torch.empty(
(self.capacity, *action_shape), device=self.storage_device
)
self.actions = torch.empty((self.capacity, *action_shape), device=self.storage_device)
self.rewards = torch.empty((self.capacity,), device=self.storage_device)
if not self.optimize_memory:
@@ -262,12 +242,8 @@ class ReplayBuffer:
# Just create a reference to states for consistent API
self.next_states = self.states # Just a reference for API consistency
self.dones = torch.empty(
(self.capacity,), dtype=torch.bool, device=self.storage_device
)
self.truncateds = torch.empty(
(self.capacity,), dtype=torch.bool, device=self.storage_device
)
self.dones = torch.empty((self.capacity,), dtype=torch.bool, device=self.storage_device)
self.truncateds = torch.empty((self.capacity,), dtype=torch.bool, device=self.storage_device)
self.initialized = True
def __len__(self):
@@ -294,9 +270,7 @@ class ReplayBuffer:
if not self.optimize_memory:
# Only store next_states if not optimizing memory
self.next_states[key][self.position].copy_(
next_state[key].squeeze(dim=0)
)
self.next_states[key][self.position].copy_(next_state[key].squeeze(dim=0))
self.actions[self.position].copy_(action.squeeze(dim=0))
self.rewards[self.position] = reward
@@ -309,23 +283,15 @@ class ReplayBuffer:
def sample(self, batch_size: int) -> BatchTransition:
"""Sample a random batch of transitions and collate them into batched tensors."""
if not self.initialized:
raise RuntimeError(
"Cannot sample from an empty buffer. Add transitions first."
)
raise RuntimeError("Cannot sample from an empty buffer. Add transitions first.")
batch_size = min(batch_size, self.size)
# Random indices for sampling - create on the same device as storage
idx = torch.randint(
low=0, high=self.size, size=(batch_size,), device=self.storage_device
)
idx = torch.randint(low=0, high=self.size, size=(batch_size,), device=self.storage_device)
# Identify image keys that need augmentation
image_keys = (
[k for k in self.states if k.startswith("observation.image")]
if self.use_drq
else []
)
image_keys = [k for k in self.states if k.startswith("observation.image")] if self.use_drq else []
# Create batched state and next_state
batch_state = {}
@@ -358,13 +324,9 @@ class ReplayBuffer:
# Split the augmented images back to their sources
for i, key in enumerate(image_keys):
# State images are at even indices (0, 2, 4...)
batch_state[key] = augmented_images[
i * 2 * batch_size : (i * 2 + 1) * batch_size
]
batch_state[key] = augmented_images[i * 2 * batch_size : (i * 2 + 1) * batch_size]
# Next state images are at odd indices (1, 3, 5...)
batch_next_state[key] = augmented_images[
(i * 2 + 1) * batch_size : (i + 1) * 2 * batch_size
]
batch_next_state[key] = augmented_images[(i * 2 + 1) * batch_size : (i + 1) * 2 * batch_size]
# Sample other tensors
batch_actions = self.actions[idx].to(self.device)
@@ -434,16 +396,12 @@ class ReplayBuffer:
)
# Convert dataset to transitions
list_transition = cls._lerobotdataset_to_transitions(
dataset=lerobot_dataset, state_keys=state_keys
)
list_transition = cls._lerobotdataset_to_transitions(dataset=lerobot_dataset, state_keys=state_keys)
# Initialize the buffer with the first transition to set up storage tensors
if list_transition:
first_transition = list_transition[0]
first_state = {
k: v.to(device) for k, v in first_transition["state"].items()
}
first_state = {k: v.to(device) for k, v in first_transition["state"].items()}
first_action = first_transition["action"].to(device)
# Apply action mask/delta if needed
@@ -541,9 +499,7 @@ class ReplayBuffer:
# Convert transitions into episodes and frames
episode_index = 0
lerobot_dataset.episode_buffer = lerobot_dataset.create_episode_buffer(
episode_index=episode_index
)
lerobot_dataset.episode_buffer = lerobot_dataset.create_episode_buffer(episode_index=episode_index)
frame_idx_in_episode = 0
for idx in range(self.size):
@@ -557,12 +513,8 @@ class ReplayBuffer:
# Fill action, reward, done
frame_dict["action"] = self.actions[actual_idx].cpu()
frame_dict["next.reward"] = torch.tensor(
[self.rewards[actual_idx]], dtype=torch.float32
).cpu()
frame_dict["next.done"] = torch.tensor(
[self.dones[actual_idx]], dtype=torch.bool
).cpu()
frame_dict["next.reward"] = torch.tensor([self.rewards[actual_idx]], dtype=torch.float32).cpu()
frame_dict["next.done"] = torch.tensor([self.dones[actual_idx]], dtype=torch.bool).cpu()
# Add to the dataset's buffer
lerobot_dataset.add_frame(frame_dict)
@@ -619,9 +571,7 @@ class ReplayBuffer:
A list of Transition dictionaries with the same length as `dataset`.
"""
if state_keys is None:
raise ValueError(
"State keys must be provided when converting LeRobotDataset to Transitions."
)
raise ValueError("State keys must be provided when converting LeRobotDataset to Transitions.")
transitions = []
num_frames = len(dataset)
@@ -632,9 +582,7 @@ class ReplayBuffer:
# If not, we need to infer it from episode boundaries
if not has_done_key:
print(
"'next.done' key not found in dataset. Inferring from episode boundaries..."
)
print("'next.done' key not found in dataset. Inferring from episode boundaries...")
for i in tqdm(range(num_frames)):
current_sample = dataset[i]
@@ -886,8 +834,7 @@ if __name__ == "__main__":
# We need to be careful because we don't know the original index
# So we check if the increment is roughly 0.01
next_state_check = (
abs(next_state_sig - state_sig - 0.01) < 1e-4
or abs(next_state_sig - state_sig) < 1e-4
abs(next_state_sig - state_sig - 0.01) < 1e-4 or abs(next_state_sig - state_sig) < 1e-4
)
# Count correct relationships
@@ -901,17 +848,11 @@ if __name__ == "__main__":
total_checks += 3
alignment_accuracy = 100.0 * correct_relationships / total_checks
print(
f"State-action-reward-next_state alignment accuracy: {alignment_accuracy:.2f}%"
)
print(f"State-action-reward-next_state alignment accuracy: {alignment_accuracy:.2f}%")
if alignment_accuracy > 99.0:
print(
"✅ All relationships verified! Buffer maintains correct temporal relationships."
)
print("✅ All relationships verified! Buffer maintains correct temporal relationships.")
else:
print(
"⚠️ Some relationships don't match expected patterns. Buffer may have alignment issues."
)
print("⚠️ Some relationships don't match expected patterns. Buffer may have alignment issues.")
# Print some debug information about failures
print("\nDebug information for failed checks:")
@@ -973,18 +914,14 @@ if __name__ == "__main__":
# Verify consistency before and after conversion
original_states = batch["state"]["observation.image"].mean().item()
reconverted_states = (
reconverted_batch["state"]["observation.image"].mean().item()
)
reconverted_states = reconverted_batch["state"]["observation.image"].mean().item()
print(f"Original buffer state mean: {original_states:.4f}")
print(f"Reconverted buffer state mean: {reconverted_states:.4f}")
if abs(original_states - reconverted_states) < 1.0:
print("Values are reasonably similar - conversion works as expected")
else:
print(
"WARNING: Significant difference between original and reconverted values"
)
print("WARNING: Significant difference between original and reconverted values")
print("\nAll previous tests completed!")
@@ -1093,15 +1030,11 @@ if __name__ == "__main__":
all_indices = torch.arange(sequential_batch_size, device=test_buffer.storage_device)
# Get state tensors
batch_state = {
"value": test_buffer.states["value"][all_indices].to(test_buffer.device)
}
batch_state = {"value": test_buffer.states["value"][all_indices].to(test_buffer.device)}
# Get next_state using memory-optimized approach (simply index+1)
next_indices = (all_indices + 1) % test_buffer.capacity
batch_next_state = {
"value": test_buffer.states["value"][next_indices].to(test_buffer.device)
}
batch_next_state = {"value": test_buffer.states["value"][next_indices].to(test_buffer.device)}
# Get other tensors
batch_dones = test_buffer.dones[all_indices].to(test_buffer.device)
@@ -1121,9 +1054,7 @@ if __name__ == "__main__":
print("- We always use the next state in the buffer (index+1) as next_state")
print("- For terminal states, this means using the first state of the next episode")
print("- This is a common tradeoff in RL implementations for memory efficiency")
print(
"- Since we track done flags, the algorithm can handle these transitions correctly"
)
print("- Since we track done flags, the algorithm can handle these transitions correctly")
# Test random sampling
print("\nVerifying random sampling with simplified memory optimization...")
@@ -1137,23 +1068,19 @@ if __name__ == "__main__":
# Print a few samples
print("Random samples - State, Next State, Done (First 10):")
for i in range(10):
print(
f" {random_state_values[i]:.1f}{random_next_values[i]:.1f}, Done: {random_done_flags[i]}"
)
print(f" {random_state_values[i]:.1f}{random_next_values[i]:.1f}, Done: {random_done_flags[i]}")
# Calculate memory savings
# Assume optimized_buffer and standard_buffer have already been initialized and filled
std_mem = (
sum(
standard_buffer.states[key].nelement()
* standard_buffer.states[key].element_size()
standard_buffer.states[key].nelement() * standard_buffer.states[key].element_size()
for key in standard_buffer.states
)
* 2
)
opt_mem = sum(
optimized_buffer.states[key].nelement()
* optimized_buffer.states[key].element_size()
optimized_buffer.states[key].nelement() * optimized_buffer.states[key].element_size()
for key in optimized_buffer.states
)