forked from tangger/lerobot
Added support for checkpointing the policy. We can save and load the policy state dict, optimizers state, optimization step and interaction step
Added functions for converting the replay buffer from and to LeRobotDataset. When we want to save the replay buffer, we convert it first to LeRobotDataset format and save it locally and vice-versa. Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
committed by
AdilZouitine
parent
9afd093030
commit
2023289ce8
@@ -18,6 +18,7 @@ import io
|
||||
import logging
|
||||
import pickle
|
||||
import queue
|
||||
import shutil
|
||||
import time
|
||||
from pprint import pformat
|
||||
from threading import Lock, Thread
|
||||
@@ -29,18 +30,25 @@ import hilserl_pb2 # type: ignore
|
||||
import hilserl_pb2_grpc # type: ignore
|
||||
import hydra
|
||||
import torch
|
||||
from deepdiff import DeepDiff
|
||||
from omegaconf import DictConfig, OmegaConf
|
||||
from termcolor import colored
|
||||
from torch import nn
|
||||
|
||||
# TODO: Remove the import of maniskill
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
|
||||
# TODO: Remove the import of maniskill
|
||||
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
from lerobot.common.logger import Logger, log_output_dir
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.policies.sac.modeling_sac import SACPolicy
|
||||
from lerobot.common.utils.utils import (
|
||||
format_big_number,
|
||||
get_global_random_state,
|
||||
get_safe_torch_device,
|
||||
init_hydra_config,
|
||||
init_logging,
|
||||
set_global_random_state,
|
||||
set_global_seed,
|
||||
)
|
||||
from lerobot.scripts.server.buffer import (
|
||||
@@ -127,10 +135,9 @@ def add_actor_information_and_train(
|
||||
optimizers: dict[str, torch.optim.Optimizer],
|
||||
policy: nn.Module,
|
||||
policy_lock: Lock,
|
||||
buffer_lock: Lock,
|
||||
offline_buffer_lock: Lock,
|
||||
logger_lock: Lock,
|
||||
logger: Logger,
|
||||
resume_optimization_step: int | None = None,
|
||||
resume_interaction_step: int | None = None,
|
||||
):
|
||||
"""
|
||||
Handles data transfer from the actor to the learner, manages training updates,
|
||||
@@ -159,16 +166,17 @@ def add_actor_information_and_train(
|
||||
optimizers (Dict[str, torch.optim.Optimizer]): A dictionary of optimizers (`"actor"`, `"critic"`, `"temperature"`).
|
||||
policy (nn.Module): The reinforcement learning policy with critic, actor, and temperature parameters.
|
||||
policy_lock (Lock): A threading lock to ensure safe policy updates.
|
||||
buffer_lock (Lock): A threading lock to safely access the online replay buffer.
|
||||
offline_buffer_lock (Lock): A threading lock to safely access the offline replay buffer.
|
||||
logger_lock (Lock): A threading lock to safely log training metrics.
|
||||
logger (Logger): Logger instance for tracking training progress.
|
||||
resume_optimization_step (int | None): In the case of resume training, start from the last optimization step reached.
|
||||
resume_interaction_step (int | None): In the case of resume training, shift the interaction step with the last saved step in order to not break logging.
|
||||
"""
|
||||
# NOTE: This function doesn't have a single responsibility, it should be split into multiple functions
|
||||
# in the future. The reason why we did that is the GIL in Python. It's super slow the performance
|
||||
# are divided by 200. So we need to have a single thread that does all the work.
|
||||
time.time()
|
||||
optimization_step = 0
|
||||
interaction_message, transition = None, None
|
||||
optimization_step = resume_optimization_step if resume_optimization_step is not None else 0
|
||||
interaction_step_shift = resume_interaction_step if resume_interaction_step is not None else 0
|
||||
while True:
|
||||
while not transition_queue.empty():
|
||||
transition_list = transition_queue.get()
|
||||
@@ -178,6 +186,8 @@ def add_actor_information_and_train(
|
||||
|
||||
while not interaction_message_queue.empty():
|
||||
interaction_message = interaction_message_queue.get()
|
||||
# If cfg.resume, shift the interaction step with the last checkpointed step in order to not break the logging
|
||||
interaction_message["Interaction step"] += interaction_step_shift
|
||||
logger.log_dict(interaction_message, mode="train", custom_step_key="Interaction step")
|
||||
|
||||
if len(replay_buffer) < cfg.training.online_step_before_learning:
|
||||
@@ -186,9 +196,9 @@ def add_actor_information_and_train(
|
||||
for _ in range(cfg.policy.utd_ratio - 1):
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
||||
if cfg.dataset_repo_id is not None:
|
||||
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
batch = concatenate_batch_transitions(batch, batch_offline)
|
||||
# if cfg.offline_dataset_repo_id is not None:
|
||||
# batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
# batch = concatenate_batch_transitions(batch, batch_offline)
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
@@ -210,11 +220,11 @@ def add_actor_information_and_train(
|
||||
|
||||
batch = replay_buffer.sample(batch_size)
|
||||
|
||||
if cfg.dataset_repo_id is not None:
|
||||
batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
batch = concatenate_batch_transitions(
|
||||
left_batch_transitions=batch, right_batch_transition=batch_offline
|
||||
)
|
||||
# if cfg.offline_dataset_repo_id is not None:
|
||||
# batch_offline = offline_replay_buffer.sample(batch_size)
|
||||
# batch = concatenate_batch_transitions(
|
||||
# left_batch_transitions=batch, right_batch_transition=batch_offline
|
||||
# )
|
||||
|
||||
actions = batch["action"]
|
||||
rewards = batch["reward"]
|
||||
@@ -274,6 +284,39 @@ def add_actor_information_and_train(
|
||||
if optimization_step % cfg.training.log_freq == 0:
|
||||
logging.info(f"[LEARNER] Number of optimization step: {optimization_step}")
|
||||
|
||||
if cfg.training.save_checkpoint and (
|
||||
optimization_step % cfg.training.save_freq == 0 or optimization_step == cfg.training.online_steps
|
||||
):
|
||||
logging.info(f"Checkpoint policy after step {optimization_step}")
|
||||
# Note: Save with step as the identifier, and format it to have at least 6 digits but more if
|
||||
# needed (choose 6 as a minimum for consistency without being overkill).
|
||||
_num_digits = max(6, len(str(cfg.training.online_steps)))
|
||||
step_identifier = f"{optimization_step:0{_num_digits}d}"
|
||||
interaction_step = (
|
||||
interaction_message["Interaction step"] if interaction_message is not None else 0
|
||||
)
|
||||
logger.save_checkpoint(
|
||||
optimization_step,
|
||||
policy,
|
||||
optimizers,
|
||||
scheduler=None,
|
||||
identifier=step_identifier,
|
||||
interaction_step=interaction_step,
|
||||
)
|
||||
|
||||
# TODO : temporarly save replay buffer here, remove later when on the robot
|
||||
# We want to control this with the keyboard inputs
|
||||
dataset_dir = logger.log_dir / "dataset"
|
||||
if dataset_dir.exists() and dataset_dir.is_dir():
|
||||
shutil.rmtree(
|
||||
dataset_dir,
|
||||
)
|
||||
replay_buffer.to_lerobot_dataset(
|
||||
cfg.dataset_repo_id, fps=cfg.fps, root=logger.log_dir / "dataset"
|
||||
)
|
||||
|
||||
logging.info("Resume training")
|
||||
|
||||
|
||||
def make_optimizers_and_scheduler(cfg, policy: nn.Module):
|
||||
"""
|
||||
@@ -330,7 +373,49 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
logging.info(pformat(OmegaConf.to_container(cfg)))
|
||||
|
||||
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
|
||||
logger_lock = Lock()
|
||||
|
||||
## Handle resume by reloading the state of the policy and optimization
|
||||
# If we are resuming a run, we need to check that a checkpoint exists in the log directory, and we need
|
||||
# to check for any differences between the provided config and the checkpoint's config.
|
||||
if cfg.resume:
|
||||
if not Logger.get_last_checkpoint_dir(out_dir).exists():
|
||||
raise RuntimeError(
|
||||
"You have set resume=True, but there is no model checkpoint in "
|
||||
f"{Logger.get_last_checkpoint_dir(out_dir)}"
|
||||
)
|
||||
checkpoint_cfg_path = str(Logger.get_last_pretrained_model_dir(out_dir) / "config.yaml")
|
||||
logging.info(
|
||||
colored(
|
||||
"You have set resume=True, indicating that you wish to resume a run",
|
||||
color="yellow",
|
||||
attrs=["bold"],
|
||||
)
|
||||
)
|
||||
# Get the configuration file from the last checkpoint.
|
||||
checkpoint_cfg = init_hydra_config(checkpoint_cfg_path)
|
||||
# Check for differences between the checkpoint configuration and provided configuration.
|
||||
diff = DeepDiff(OmegaConf.to_container(checkpoint_cfg), OmegaConf.to_container(cfg))
|
||||
# Ignore the `resume` and parameters.
|
||||
if "values_changed" in diff and "root['resume']" in diff["values_changed"]:
|
||||
del diff["values_changed"]["root['resume']"]
|
||||
|
||||
# Log a warning about differences between the checkpoint configuration and the provided
|
||||
# configuration.
|
||||
if len(diff) > 0:
|
||||
logging.warning(
|
||||
"At least one difference was detected between the checkpoint configuration and "
|
||||
f"the provided configuration: \n{pformat(diff)}\nNote that the checkpoint configuration "
|
||||
"takes precedence.",
|
||||
)
|
||||
# Use the checkpoint config instead of the provided config (but keep `resume` parameter).
|
||||
cfg = checkpoint_cfg
|
||||
cfg.resume = True
|
||||
elif Logger.get_last_checkpoint_dir(out_dir).exists():
|
||||
raise RuntimeError(
|
||||
f"The configured output directory {Logger.get_last_checkpoint_dir(out_dir)} already exists. If "
|
||||
"you meant to resume training, please use `resume=true` in your command or yaml configuration."
|
||||
)
|
||||
# ===========================
|
||||
|
||||
set_global_seed(cfg.seed)
|
||||
|
||||
@@ -346,20 +431,38 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
|
||||
# TODO: At some point we should just need make sac policy
|
||||
policy_lock = Lock()
|
||||
with logger_lock:
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online traning, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
|
||||
device=device,
|
||||
)
|
||||
policy: SACPolicy = make_policy(
|
||||
hydra_cfg=cfg,
|
||||
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
|
||||
# Hack: But if we do online traning, we do not need dataset_stats
|
||||
dataset_stats=None,
|
||||
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
|
||||
)
|
||||
# device=device,
|
||||
# )
|
||||
assert isinstance(policy, nn.Module)
|
||||
|
||||
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
|
||||
# load last training state
|
||||
# We can't use the logger function in `lerobot/common/logger.py`
|
||||
# because it only loads the optimization step and not the interaction one
|
||||
# to avoid altering that code, we will just load the optimization state manually
|
||||
resume_interaction_step, resume_optimization_step = None, None
|
||||
if cfg.resume:
|
||||
training_state = torch.load(logger.last_checkpoint_dir / logger.training_state_file_name)
|
||||
if type(training_state["optimizer"]) is dict:
|
||||
assert set(training_state["optimizer"].keys()) == set(optimizers.keys()), (
|
||||
"Optimizer dictionaries do not have the same keys during resume!"
|
||||
)
|
||||
for k, v in training_state["optimizer"].items():
|
||||
optimizers[k].load_state_dict(v)
|
||||
else:
|
||||
optimizers.load_state_dict(training_state["optimizer"])
|
||||
# Small hack to get the expected keys: use `get_global_random_state`.
|
||||
set_global_random_state({k: training_state[k] for k in get_global_random_state()})
|
||||
resume_optimization_step = training_state["step"]
|
||||
resume_interaction_step = training_state["interaction_step"]
|
||||
|
||||
# TODO: Handle resume
|
||||
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
|
||||
num_total_params = sum(p.numel() for p in policy.parameters())
|
||||
|
||||
@@ -369,24 +472,34 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
|
||||
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
|
||||
|
||||
buffer_lock = Lock()
|
||||
replay_buffer = ReplayBuffer(
|
||||
capacity=cfg.training.online_buffer_capacity, device=device, state_keys=cfg.policy.input_shapes.keys()
|
||||
)
|
||||
|
||||
if not cfg.resume:
|
||||
replay_buffer = ReplayBuffer(
|
||||
capacity=cfg.training.online_buffer_capacity,
|
||||
device=device,
|
||||
state_keys=cfg.policy.input_shapes.keys(),
|
||||
)
|
||||
else:
|
||||
# Reload replay buffer
|
||||
dataset = LeRobotDataset(
|
||||
repo_id=cfg.dataset_repo_id, local_files_only=True, root=logger.log_dir / "dataset"
|
||||
)
|
||||
replay_buffer = ReplayBuffer.from_lerobot_dataset(
|
||||
lerobot_dataset=dataset,
|
||||
capacity=cfg.training.online_buffer_capacity,
|
||||
device=device,
|
||||
state_keys=cfg.policy.input_shapes.keys(),
|
||||
)
|
||||
batch_size = cfg.training.batch_size
|
||||
offline_buffer_lock = None
|
||||
offline_replay_buffer = None
|
||||
|
||||
if cfg.dataset_repo_id is not None:
|
||||
logging.info("make_dataset offline buffer")
|
||||
offline_dataset = make_dataset(cfg)
|
||||
logging.info("Convertion to a offline replay buffer")
|
||||
offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
|
||||
offline_dataset, device=device, state_keys=cfg.policy.input_shapes.keys()
|
||||
)
|
||||
offline_buffer_lock = Lock()
|
||||
batch_size: int = batch_size // 2 # We will sample from both replay buffer
|
||||
# if cfg.dataset_repo_id is not None:
|
||||
# logging.info("make_dataset offline buffer")
|
||||
# offline_dataset = make_dataset(cfg)
|
||||
# logging.info("Convertion to a offline replay buffer")
|
||||
# offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
|
||||
# offline_dataset, device=device, state_keys=cfg.policy.input_shapes.keys()
|
||||
# )
|
||||
# batch_size: int = batch_size // 2 # We will sample from both replay buffer
|
||||
|
||||
actor_ip = cfg.actor_learner_config.actor_ip
|
||||
port = cfg.actor_learner_config.port
|
||||
@@ -413,10 +526,9 @@ def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = No
|
||||
optimizers,
|
||||
policy,
|
||||
policy_lock,
|
||||
buffer_lock,
|
||||
offline_buffer_lock,
|
||||
logger_lock,
|
||||
logger,
|
||||
resume_optimization_step,
|
||||
resume_interaction_step,
|
||||
),
|
||||
)
|
||||
transition_thread.start()
|
||||
|
||||
Reference in New Issue
Block a user