test_envs.py are passing, remove simxarm and pusht directories

This commit is contained in:
Cadene
2024-04-05 16:21:07 +00:00
parent f56b1a0e16
commit 26602269cd
42 changed files with 86 additions and 2444 deletions

View File

@@ -44,9 +44,9 @@ from huggingface_hub import snapshot_download
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.utils import postprocess_action, preprocess_observation
from lerobot.common.logger import log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.transforms import apply_inverse_transform
from lerobot.common.utils import get_safe_torch_device, init_hydra_config, init_logging, set_global_seed
@@ -54,34 +54,6 @@ def write_video(video_path, stacked_frames, fps):
imageio.mimsave(video_path, stacked_frames, fps=fps)
def preprocess_observation(observation, transform=None):
# map to expected inputs for the policy
obs = {
"observation.image": torch.from_numpy(observation["pixels"]).float(),
"observation.state": torch.from_numpy(observation["agent_pos"]).float(),
}
# convert to (b c h w) torch format
obs["observation.image"] = einops.rearrange(obs["observation.image"], "b h w c -> b c h w")
# apply same transforms as in training
if transform is not None:
for key in obs:
obs[key] = torch.stack([transform({key: item})[key] for item in obs[key]])
return obs
def postprocess_action(action, transform=None):
action = action.to("cpu")
# action is a batch (num_env,action_dim) instead of an item (action_dim),
# we assume applying inverse transform on a batch works the same
action = apply_inverse_transform({"action": action}, transform)["action"].numpy()
assert (
action.ndim == 2
), "we assume dimensions are respectively the number of parallel envs, action dimensions"
return action
def eval_policy(
env: gym.vector.VectorEnv,
policy,
@@ -114,10 +86,10 @@ def eval_policy(
def maybe_render_frame(env):
if save_video: # noqa: B023
if return_first_video:
visu = env.envs[0].render()
visu = env.envs[0].render(mode="visualization")
visu = visu[None, ...] # add batch dim
else:
visu = np.stack([env.render() for env in env.envs])
visu = np.stack([env.render(mode="visualization") for env in env.envs])
ep_frames.append(visu) # noqa: B023
for _ in range(num_episodes):