[HIL-SERL] Update CI to allow installation of prerelease versions for lerobot (#1018)

Co-authored-by: imstevenpmwork <steven.palma@huggingface.co>
This commit is contained in:
Adil Zouitine
2025-04-24 10:18:03 +02:00
committed by GitHub
parent a0018240d5
commit 299effe0f1
10 changed files with 78 additions and 388 deletions

View File

@@ -4,6 +4,7 @@ from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
ClassifierConfig,
ClassifierOutput,
)
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from tests.utils import require_package
@@ -27,19 +28,39 @@ def test_binary_classifier_with_default_params():
)
config = ClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(1,)),
}
config.normalization_mapping = {
"VISUAL": NormalizationMode.IDENTITY,
"REWARD": NormalizationMode.IDENTITY,
}
config.num_cameras = 1
classifier = Classifier(config)
batch_size = 10
input = torch.rand(batch_size, 3, 224, 224)
output = classifier(input)
input = {
"observation.image": torch.rand((batch_size, 3, 224, 224)),
"next.reward": torch.randint(low=0, high=2, size=(batch_size,)).float(),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 224, 224])
assert labels.shape == torch.Size([batch_size])
output = classifier.predict(images)
assert output is not None
assert output.logits.shape == torch.Size([batch_size])
assert output.logits.size() == torch.Size([batch_size])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 2048])
assert output.hidden_states.shape == torch.Size([batch_size, 512])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@@ -50,20 +71,37 @@ def test_multiclass_classifier():
)
num_classes = 5
config = ClassifierConfig(num_classes=num_classes)
config = ClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(num_classes,)),
}
config.num_cameras = 1
config.num_classes = num_classes
classifier = Classifier(config)
batch_size = 10
input = torch.rand(batch_size, 3, 224, 224)
output = classifier(input)
input = {
"observation.image": torch.rand((batch_size, 3, 224, 224)),
"next.reward": torch.rand((batch_size, num_classes)),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 224, 224])
assert labels.shape == torch.Size([batch_size, num_classes])
output = classifier.predict(images)
assert output is not None
assert output.logits.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 2048])
assert output.hidden_states.shape == torch.Size([batch_size, 512])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@@ -87,9 +125,9 @@ def test_explicit_device_setup():
Classifier,
)
config = ClassifierConfig(device="meta")
assert config.device == "meta"
config = ClassifierConfig(device="cpu")
assert config.device == "cpu"
classifier = Classifier(config)
for p in classifier.parameters():
assert p.device == torch.device("meta")
assert p.device == torch.device("cpu")

View File

@@ -1,310 +0,0 @@
import os
import tempfile
from pathlib import Path
from unittest.mock import MagicMock, patch
import pytest
import torch
from hydra import compose, initialize_config_dir
from torch import nn
from torch.utils.data import Dataset
from lerobot.common.policies.hilserl.classifier.configuration_classifier import (
ClassifierConfig,
)
from lerobot.common.policies.hilserl.classifier.modeling_classifier import Classifier
from lerobot.scripts.train_hilserl_classifier import (
create_balanced_sampler,
train,
train_epoch,
validate,
)
class MockDataset(Dataset):
def __init__(self, data):
self.data = data
self.meta = MagicMock()
self.meta.stats = {}
def __getitem__(self, idx):
return self.data[idx]
def __len__(self):
return len(self.data)
def make_dummy_model():
model_config = ClassifierConfig(
num_classes=2,
model_name="hf-tiny-model-private/tiny-random-ResNetModel",
num_cameras=1,
)
model = Classifier(config=model_config)
return model
def test_create_balanced_sampler():
# Mock dataset with imbalanced classes
data = [
{"label": 0},
{"label": 0},
{"label": 1},
{"label": 0},
{"label": 1},
{"label": 1},
{"label": 1},
{"label": 1},
]
dataset = MockDataset(data)
cfg = MagicMock()
cfg.training.label_key = "label"
sampler = create_balanced_sampler(dataset, cfg)
# Get weights from the sampler
weights = sampler.weights.float()
# Check that samples have appropriate weights
labels = [item["label"] for item in data]
class_counts = torch.tensor([labels.count(0), labels.count(1)], dtype=torch.float32)
class_weights = 1.0 / class_counts
expected_weights = torch.tensor([class_weights[label] for label in labels], dtype=torch.float32)
# Test that the weights are correct
assert torch.allclose(weights, expected_weights)
def test_train_epoch():
model = make_dummy_model()
# Mock components
model.train = MagicMock()
train_loader = [
{
"image": torch.rand(2, 3, 224, 224),
"label": torch.tensor([0.0, 1.0]),
}
]
criterion = nn.BCEWithLogitsLoss()
optimizer = MagicMock()
grad_scaler = MagicMock()
device = torch.device("cpu")
logger = MagicMock()
step = 0
cfg = MagicMock()
cfg.training.image_keys = ["image"]
cfg.training.label_key = "label"
cfg.training.use_amp = False
# Call the function under test
train_epoch(
model,
train_loader,
criterion,
optimizer,
grad_scaler,
device,
logger,
step,
cfg,
)
# Check that model.train() was called
model.train.assert_called_once()
# Check that optimizer.zero_grad() was called
optimizer.zero_grad.assert_called()
# Check that logger.log_dict was called
logger.log_dict.assert_called()
def test_validate():
model = make_dummy_model()
# Mock components
model.eval = MagicMock()
val_loader = [
{
"image": torch.rand(2, 3, 224, 224),
"label": torch.tensor([0.0, 1.0]),
}
]
criterion = nn.BCEWithLogitsLoss()
device = torch.device("cpu")
logger = MagicMock()
cfg = MagicMock()
cfg.training.image_keys = ["image"]
cfg.training.label_key = "label"
cfg.training.use_amp = False
# Call validate
accuracy, eval_info = validate(model, val_loader, criterion, device, logger, cfg)
# Check that model.eval() was called
model.eval.assert_called_once()
# Check accuracy/eval_info are calculated and of the correct type
assert isinstance(accuracy, float)
assert isinstance(eval_info, dict)
def test_train_epoch_multiple_cameras():
model_config = ClassifierConfig(
num_classes=2,
model_name="hf-tiny-model-private/tiny-random-ResNetModel",
num_cameras=2,
)
model = Classifier(config=model_config)
# Mock components
model.train = MagicMock()
train_loader = [
{
"image_1": torch.rand(2, 3, 224, 224),
"image_2": torch.rand(2, 3, 224, 224),
"label": torch.tensor([0.0, 1.0]),
}
]
criterion = nn.BCEWithLogitsLoss()
optimizer = MagicMock()
grad_scaler = MagicMock()
device = torch.device("cpu")
logger = MagicMock()
step = 0
cfg = MagicMock()
cfg.training.image_keys = ["image_1", "image_2"]
cfg.training.label_key = "label"
cfg.training.use_amp = False
# Call the function under test
train_epoch(
model,
train_loader,
criterion,
optimizer,
grad_scaler,
device,
logger,
step,
cfg,
)
# Check that model.train() was called
model.train.assert_called_once()
# Check that optimizer.zero_grad() was called
optimizer.zero_grad.assert_called()
# Check that logger.log_dict was called
logger.log_dict.assert_called()
@pytest.mark.parametrize("resume", [True, False])
@patch("lerobot.scripts.train_hilserl_classifier.init_hydra_config")
@patch("lerobot.scripts.train_hilserl_classifier.Logger.get_last_checkpoint_dir")
@patch("lerobot.scripts.train_hilserl_classifier.Logger.get_last_pretrained_model_dir")
@patch("lerobot.scripts.train_hilserl_classifier.Logger")
@patch("lerobot.scripts.train_hilserl_classifier.LeRobotDataset")
@patch("lerobot.scripts.train_hilserl_classifier.get_model")
def test_resume_function(
mock_get_model,
mock_dataset,
mock_logger,
mock_get_last_pretrained_model_dir,
mock_get_last_checkpoint_dir,
mock_init_hydra_config,
resume,
):
# Initialize Hydra
test_file_dir = os.path.dirname(os.path.abspath(__file__))
config_dir = os.path.abspath(os.path.join(test_file_dir, "..", "lerobot", "configs", "policy"))
assert os.path.exists(config_dir), f"Config directory does not exist at {config_dir}"
with initialize_config_dir(config_dir=config_dir, job_name="test_app", version_base="1.2"):
cfg = compose(
config_name="hilserl_classifier",
overrides=[
"device=cpu",
"seed=42",
f"output_dir={tempfile.mkdtemp()}",
"wandb.enable=False",
f"resume={resume}",
"dataset_repo_id=dataset_repo_id",
"train_split_proportion=0.8",
"training.num_workers=0",
"training.batch_size=2",
"training.image_keys=[image]",
"training.label_key=label",
"training.use_amp=False",
"training.num_epochs=1",
"eval.batch_size=2",
],
)
# Mock the init_hydra_config function to return cfg
mock_init_hydra_config.return_value = cfg
# Mock dataset
dataset = MockDataset([{"image": torch.rand(3, 224, 224), "label": i % 2} for i in range(10)])
mock_dataset.return_value = dataset
# Mock checkpoint handling
mock_checkpoint_dir = MagicMock(spec=Path)
mock_checkpoint_dir.exists.return_value = resume # Only exists if resuming
mock_get_last_checkpoint_dir.return_value = mock_checkpoint_dir
mock_get_last_pretrained_model_dir.return_value = Path(tempfile.mkdtemp())
# Mock logger
logger = MagicMock()
resumed_step = 1000
if resume:
logger.load_last_training_state.return_value = resumed_step
else:
logger.load_last_training_state.return_value = 0
mock_logger.return_value = logger
# Instantiate the model and set make_policy to return it
model = make_dummy_model()
mock_get_model.return_value = model
# Call train
train(cfg)
# Check that checkpoint handling methods were called
if resume:
mock_get_last_checkpoint_dir.assert_called_once_with(Path(cfg.output_dir))
mock_get_last_pretrained_model_dir.assert_called_once_with(Path(cfg.output_dir))
mock_checkpoint_dir.exists.assert_called_once()
logger.load_last_training_state.assert_called_once()
else:
mock_get_last_checkpoint_dir.assert_not_called()
mock_get_last_pretrained_model_dir.assert_not_called()
mock_checkpoint_dir.exists.assert_not_called()
logger.load_last_training_state.assert_not_called()
# Collect the steps from logger.log_dict calls
train_log_calls = logger.log_dict.call_args_list
# Extract the steps used in the train logging
steps = []
for call in train_log_calls:
mode = call.kwargs.get("mode", call.args[2] if len(call.args) > 2 else None)
if mode == "train":
step = call.kwargs.get("step", call.args[1] if len(call.args) > 1 else None)
steps.append(step)
expected_start_step = resumed_step if resume else 0
# Calculate expected_steps
train_size = int(cfg.train_split_proportion * len(dataset))
batch_size = cfg.training.batch_size
num_batches = (train_size + batch_size - 1) // batch_size
expected_steps = [expected_start_step + i for i in range(num_batches)]
assert steps == expected_steps, f"Expected steps {expected_steps}, got {steps}"