Address comments

This commit is contained in:
Cadene
2024-04-16 17:14:40 +00:00
parent b241ea46dd
commit 36d9e885ef
24 changed files with 100 additions and 94 deletions

View File

@@ -2,6 +2,9 @@
"citation": "",
"description": "",
"features": {
"observation.images.top": {
"_type": "Image"
},
"observation.state": {
"feature": {
"dtype": "float32",
@@ -34,17 +37,14 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},
"observation.images.top": {
"_type": "Image"
},
"index": {
"dtype": "int64",
"_type": "Value"

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "05980bca35112ebd",
"_fingerprint": "d79cf82ffc86f110",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -2,6 +2,9 @@
"citation": "",
"description": "",
"features": {
"observation.images.top": {
"_type": "Image"
},
"observation.state": {
"feature": {
"dtype": "float32",
@@ -34,17 +37,14 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},
"observation.images.top": {
"_type": "Image"
},
"index": {
"dtype": "int64",
"_type": "Value"

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "f3330a7e1d8bc55b",
"_fingerprint": "d8e4a817b5449498",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -2,6 +2,9 @@
"citation": "",
"description": "",
"features": {
"observation.images.top": {
"_type": "Image"
},
"observation.state": {
"feature": {
"dtype": "float32",
@@ -34,17 +37,14 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},
"observation.images.top": {
"_type": "Image"
},
"index": {
"dtype": "int64",
"_type": "Value"

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "42aa77ffb6863924",
"_fingerprint": "f03482befa767127",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -2,6 +2,9 @@
"citation": "",
"description": "",
"features": {
"observation.images.top": {
"_type": "Image"
},
"observation.state": {
"feature": {
"dtype": "float32",
@@ -34,17 +37,14 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},
"observation.images.top": {
"_type": "Image"
},
"index": {
"dtype": "int64",
"_type": "Value"

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "43f176a3740fe622",
"_fingerprint": "93e03c6320c7d56e",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -45,11 +45,11 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "f7ed966ae18000ae",
"_fingerprint": "21bb9a76ed78a475",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -41,11 +41,11 @@
"dtype": "bool",
"_type": "Value"
},
"episode_data_id_from": {
"episode_data_index_from": {
"dtype": "int64",
"_type": "Value"
},
"episode_data_id_to": {
"episode_data_index_to": {
"dtype": "int64",
"_type": "Value"
},

View File

@@ -4,7 +4,7 @@
"filename": "data-00000-of-00001.arrow"
}
],
"_fingerprint": "7dcd82fc3815bba6",
"_fingerprint": "a95cbec45e3bb9d6",
"_format_columns": null,
"_format_kwargs": {},
"_format_type": "torch",

View File

@@ -95,12 +95,14 @@ def test_compute_stats():
"""
from lerobot.common.datasets.xarm import XarmDataset
DATA_DIR = Path(os.environ["DATA_DIR"]) if "DATA_DIR" in os.environ else None
# get transform to convert images from uint8 [0,255] to float32 [0,1]
transform = Prod(in_keys=XarmDataset.image_keys, prod=1 / 255.0)
dataset = XarmDataset(
dataset_id="xarm_lift_medium",
root=DATA_DIR,
transform=transform,
)
@@ -115,11 +117,11 @@ def test_compute_stats():
# get all frames from the dataset in the same dtype and range as during compute_stats
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=16,
num_workers=8,
batch_size=len(dataset),
shuffle=False,
)
data_dict = next(iter(dataloader)) # takes 23 seconds
data_dict = next(iter(dataloader))
# compute stats based on all frames from the dataset without any batching
expected_stats = {}
@@ -154,8 +156,8 @@ def test_load_previous_and_future_frames_within_tolerance():
data_dict = Dataset.from_dict({
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_data_id_from": [0, 0, 0, 0, 0],
"episode_data_id_to": [4, 4, 4, 4, 4],
"episode_data_index_from": [0, 0, 0, 0, 0],
"episode_data_index_to": [4, 4, 4, 4, 4],
})
data_dict = data_dict.with_format("torch")
item = data_dict[2]
@@ -170,8 +172,8 @@ def test_load_previous_and_future_frames_outside_tolerance_inside_episode_range(
data_dict = Dataset.from_dict({
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_data_id_from": [0, 0, 0, 0, 0],
"episode_data_id_to": [4, 4, 4, 4, 4],
"episode_data_index_from": [0, 0, 0, 0, 0],
"episode_data_index_to": [4, 4, 4, 4, 4],
})
data_dict = data_dict.with_format("torch")
item = data_dict[2]
@@ -184,8 +186,8 @@ def test_load_previous_and_future_frames_outside_tolerance_outside_episode_range
data_dict = Dataset.from_dict({
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5],
"index": [0, 1, 2, 3, 4],
"episode_data_id_from": [0, 0, 0, 0, 0],
"episode_data_id_to": [4, 4, 4, 4, 4],
"episode_data_index_from": [0, 0, 0, 0, 0],
"episode_data_index_to": [4, 4, 4, 4, 4],
})
data_dict = data_dict.with_format("torch")
item = data_dict[2]