forked from tangger/lerobot
Add Aloha env and ACT policy
WIP Aloha env tests pass Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1]) Update README Copy past from act repo Remove download.py add a WIP for Simxarm Remove download.py add a WIP for Simxarm Add act yaml (TODO: try train.py) Training can runs (TODO: eval) Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model) Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)
This commit is contained in:
@@ -1,4 +1,5 @@
|
||||
import logging
|
||||
from pathlib import Path
|
||||
|
||||
import hydra
|
||||
import numpy as np
|
||||
@@ -192,6 +193,8 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
num_episodes=cfg.eval_episodes,
|
||||
max_steps=cfg.env.episode_length // cfg.n_action_steps,
|
||||
return_first_video=True,
|
||||
video_dir=Path(out_dir) / "eval",
|
||||
save_video=True,
|
||||
)
|
||||
log_eval_info(logger, eval_info, step, cfg, offline_buffer, is_offline)
|
||||
if cfg.wandb.enable:
|
||||
|
||||
Reference in New Issue
Block a user