forked from tangger/lerobot
id -> index, finish moving compute_stats before hf_dataset push_to_hub
This commit is contained in:
@@ -49,7 +49,7 @@ print(f"number of episodes: {len(hf_dataset.unique('episode_id'))=}")
|
||||
print(f"average number of frames per episode: {len(hf_dataset) / len(hf_dataset.unique('episode_id')):.3f}")
|
||||
|
||||
# select the frames belonging to episode number 5
|
||||
hf_dataset = hf_dataset.filter(lambda frame: frame["episode_id"] == 5)
|
||||
hf_dataset = hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
|
||||
|
||||
# load all frames of episode 5 in RAM in PIL format
|
||||
frames = hf_dataset["observation.image"]
|
||||
|
||||
@@ -55,7 +55,7 @@ print(f"frames per second used during data collection: {dataset.fps=}")
|
||||
print(f"keys to access images from cameras: {dataset.image_keys=}")
|
||||
|
||||
# While the LeRobot dataset adds helpers for working within our library, we still expose the underling Hugging Face dataset. It may be freely replaced or modified in place. Here we use the filtering to keep only frames from episode 5.
|
||||
dataset.hf_dataset = dataset.hf_dataset.filter(lambda frame: frame["episode_id"] == 5)
|
||||
dataset.hf_dataset = dataset.hf_dataset.filter(lambda frame: frame["episode_index"] == 5)
|
||||
|
||||
# LeRobot datsets actually subclass PyTorch datasets. So you can do everything you know and love from working with the latter, for example: iterating through the dataset. Here we grap all the image frames.
|
||||
frames = [sample["observation.image"] for sample in dataset]
|
||||
|
||||
Reference in New Issue
Block a user