Validate features during add_frame + Add 2D-to-5D + Add string (#720)

This commit is contained in:
Remi
2025-02-14 19:59:48 +01:00
committed by GitHub
parent 9d6886dd08
commit 7c2bbee613
8 changed files with 448 additions and 53 deletions

View File

@@ -15,15 +15,18 @@
# limitations under the License.
import json
import logging
import re
from copy import deepcopy
from itertools import chain
from pathlib import Path
import einops
import numpy as np
import pytest
import torch
from datasets import Dataset
from huggingface_hub import HfApi
from PIL import Image
from safetensors.torch import load_file
import lerobot
@@ -33,6 +36,7 @@ from lerobot.common.datasets.compute_stats import (
get_stats_einops_patterns,
)
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.image_writer import image_array_to_pil_image
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
MultiLeRobotDataset,
@@ -49,11 +53,27 @@ from lerobot.common.robot_devices.robots.utils import make_robot
from lerobot.common.utils.random_utils import seeded_context
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from tests.fixtures.constants import DUMMY_REPO_ID
from tests.fixtures.constants import DUMMY_CHW, DUMMY_HWC, DUMMY_REPO_ID
from tests.utils import DEVICE, require_x86_64_kernel
def test_same_attributes_defined(lerobot_dataset_factory, tmp_path):
@pytest.fixture
def image_dataset(tmp_path, empty_lerobot_dataset_factory):
features = {
"image": {
"dtype": "image",
"shape": DUMMY_CHW,
"names": [
"channels",
"height",
"width",
],
}
}
return empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
def test_same_attributes_defined(tmp_path, lerobot_dataset_factory):
"""
Instantiate a LeRobotDataset both ways with '__init__()' and 'create()' and verify that instantiated
objects have the same sets of attributes defined.
@@ -76,14 +96,14 @@ def test_same_attributes_defined(lerobot_dataset_factory, tmp_path):
assert init_attr == create_attr
def test_dataset_initialization(lerobot_dataset_factory, tmp_path):
def test_dataset_initialization(tmp_path, lerobot_dataset_factory):
kwargs = {
"repo_id": DUMMY_REPO_ID,
"total_episodes": 10,
"total_frames": 400,
"episodes": [2, 5, 6],
}
dataset = lerobot_dataset_factory(root=tmp_path, **kwargs)
dataset = lerobot_dataset_factory(root=tmp_path / "test", **kwargs)
assert dataset.repo_id == kwargs["repo_id"]
assert dataset.meta.total_episodes == kwargs["total_episodes"]
@@ -93,28 +113,243 @@ def test_dataset_initialization(lerobot_dataset_factory, tmp_path):
assert dataset.num_frames == len(dataset)
def test_add_frame_no_task(tmp_path):
features = {"1d": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = LeRobotDataset.create(repo_id=DUMMY_REPO_ID, fps=30, root=tmp_path / "test", features=features)
with pytest.raises(ValueError, match="The mandatory feature 'task' wasn't found in `frame` dictionnary."):
dataset.add_frame({"1d": torch.randn(1)})
def test_add_frame_missing_task(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'task'}\n"
):
dataset.add_frame({"state": torch.randn(1)})
def test_add_frame(tmp_path):
features = {"1d": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = LeRobotDataset.create(repo_id=DUMMY_REPO_ID, fps=30, root=tmp_path / "test", features=features)
dataset.add_frame({"1d": torch.randn(1), "task": "dummy"})
def test_add_frame_missing_feature(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'state'}\n"
):
dataset.add_frame({"task": "Dummy task"})
def test_add_frame_extra_feature(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nExtra features: {'extra'}\n"
):
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task", "extra": "dummy_extra"})
def test_add_frame_wrong_type(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="The feature 'state' of dtype 'float16' is not of the expected dtype 'float32'.\n"
):
dataset.add_frame({"state": torch.randn(1, dtype=torch.float16), "task": "Dummy task"})
def test_add_frame_wrong_shape(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape("The feature 'state' of shape '(1,)' does not have the expected shape '(2,)'.\n"),
):
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"})
def test_add_frame_wrong_shape_python_float(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '<class 'float'>' provided instead.\n"
),
):
dataset.add_frame({"state": 1.0, "task": "Dummy task"})
def test_add_frame_wrong_shape_torch_ndim_0(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape("The feature 'state' of shape '()' does not have the expected shape '(1,)'.\n"),
):
dataset.add_frame({"state": torch.tensor(1.0), "task": "Dummy task"})
def test_add_frame_wrong_shape_numpy_ndim_0(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '<class 'numpy.float32'>' provided instead.\n"
),
):
dataset.add_frame({"state": np.float32(1.0), "task": "Dummy task"})
def test_add_frame(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(1), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert len(dataset) == 1
assert dataset[0]["task"] == "dummy"
assert dataset[0]["task_index"] == 0
assert dataset[0]["state"].ndim == 0
def test_add_frame_state_1d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].shape == torch.Size([2])
def test_add_frame_state_2d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].shape == torch.Size([2, 4])
def test_add_frame_state_3d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].shape == torch.Size([2, 4, 3])
def test_add_frame_state_4d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5])
def test_add_frame_state_5d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5, 1), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5, 1), "task": "dummy"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5, 1])
def test_add_frame_state_numpy(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": np.array([1], dtype=np.float32), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["state"].ndim == 0
def test_add_frame_string(tmp_path, empty_lerobot_dataset_factory):
features = {"caption": {"dtype": "string", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"caption": "Dummy caption", "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["caption"] == "Dummy caption"
def test_add_frame_image_wrong_shape(image_dataset):
dataset = image_dataset
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'image' of shape '(3, 128, 96)' does not have the expected shape '(3, 96, 128)' or '(96, 128, 3)'.\n"
),
):
c, h, w = DUMMY_CHW
dataset.add_frame({"image": torch.randn(c, w, h), "task": "Dummy task"})
def test_add_frame_image_wrong_range(image_dataset):
"""This test will display the following error message from a thread:
```
Error writing image ...test_add_frame_image_wrong_ran0/test/images/image/episode_000000/frame_000000.png:
The image data type is float, which requires values in the range [0.0, 1.0]. However, the provided range is [0.009678772038470007, 254.9776492089887].
Please adjust the range or provide a uint8 image with values in the range [0, 255]
```
Hence the image won't be saved on disk and save_episode will raise `FileNotFoundError`.
"""
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW) * 255, "task": "Dummy task"})
with pytest.raises(FileNotFoundError):
dataset.save_episode(encode_videos=False)
def test_add_frame_image(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_h_w_c(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_HWC), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_uint8(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": image, "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_pil(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": Image.fromarray(image), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate(run_compute_stats=False)
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_image_array_to_pil_image_wrong_range_float_0_255():
image = np.random.rand(*DUMMY_HWC) * 255
with pytest.raises(ValueError):
image_array_to_pil_image(image)
# TODO(aliberts):
# - [ ] test various attributes & state from init and create
# - [ ] test init with episodes and check num_frames
# - [ ] test add_frame
# - [ ] test add_episode
# - [ ] test consolidate
# - [ ] test push_to_hub