[pre-commit.ci] auto fixes from pre-commit.com hooks

for more information, see https://pre-commit.ci
This commit is contained in:
pre-commit-ci[bot]
2025-03-04 13:38:47 +00:00
committed by Michel Aractingi
parent bb69cb3c8c
commit 85fe8a3f4e
79 changed files with 2800 additions and 794 deletions

View File

@@ -364,10 +364,16 @@ def test_save_each_transform(img_tensor_factory, tmp_path):
for transform in transforms:
transform_dir = tmp_path / transform
assert transform_dir.exists(), f"{transform} directory was not created."
assert any(transform_dir.iterdir()), f"No transformed images found in {transform} directory."
assert any(
transform_dir.iterdir()
), f"No transformed images found in {transform} directory."
# Check for specific files within each transform directory
expected_files = [f"{i}.png" for i in range(1, n_examples + 1)] + ["min.png", "max.png", "mean.png"]
expected_files = [f"{i}.png" for i in range(1, n_examples + 1)] + [
"min.png",
"max.png",
"mean.png",
]
for file_name in expected_files:
assert (transform_dir / file_name).exists(), (
f"{file_name} was not found in {transform} directory."

View File

@@ -187,7 +187,9 @@ def test_save_image_torch(tmp_path, img_tensor_factory):
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(
np.uint8
)
assert np.array_equal(expected_image, saved_image)
finally:
writer.stop()
@@ -202,7 +204,9 @@ def test_save_image_torch_multiprocessing(tmp_path, img_tensor_factory):
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(
np.uint8
)
assert np.array_equal(expected_image, saved_image)
finally:
writer.stop()
@@ -292,7 +296,9 @@ def test_wait_until_done(tmp_path, img_array_factory):
writer = AsyncImageWriter(num_processes=0, num_threads=4)
try:
num_images = 100
image_arrays = [img_array_factory(height=500, width=500) for _ in range(num_images)]
image_arrays = [
img_array_factory(height=500, width=500) for _ in range(num_images)
]
fpaths = [tmp_path / f"frame_{i:06d}.png" for i in range(num_images)]
for image_array, fpath in zip(image_arrays, fpaths, strict=True):
fpath.parent.mkdir(parents=True, exist_ok=True)

View File

@@ -44,13 +44,23 @@ def make_new_buffer(
return buffer, write_dir
def make_spoof_data_frames(n_episodes: int, n_frames_per_episode: int) -> dict[str, np.ndarray]:
def make_spoof_data_frames(
n_episodes: int, n_frames_per_episode: int
) -> dict[str, np.ndarray]:
new_data = {
data_key: np.arange(n_frames_per_episode * n_episodes * np.prod(data_shape)).reshape(-1, *data_shape),
data_key: np.arange(
n_frames_per_episode * n_episodes * np.prod(data_shape)
).reshape(-1, *data_shape),
OnlineBuffer.INDEX_KEY: np.arange(n_frames_per_episode * n_episodes),
OnlineBuffer.EPISODE_INDEX_KEY: np.repeat(np.arange(n_episodes), n_frames_per_episode),
OnlineBuffer.FRAME_INDEX_KEY: np.tile(np.arange(n_frames_per_episode), n_episodes),
OnlineBuffer.TIMESTAMP_KEY: np.tile(np.arange(n_frames_per_episode) / fps, n_episodes),
OnlineBuffer.EPISODE_INDEX_KEY: np.repeat(
np.arange(n_episodes), n_frames_per_episode
),
OnlineBuffer.FRAME_INDEX_KEY: np.tile(
np.arange(n_frames_per_episode), n_episodes
),
OnlineBuffer.TIMESTAMP_KEY: np.tile(
np.arange(n_frames_per_episode) / fps, n_episodes
),
}
return new_data
@@ -219,47 +229,72 @@ def test_compute_sampler_weights_trivial(
online_dataset_size: int,
online_sampling_ratio: float,
):
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=offline_dataset_size)
offline_dataset = lerobot_dataset_factory(
tmp_path, total_episodes=1, total_frames=offline_dataset_size
)
online_dataset, _ = make_new_buffer()
if online_dataset_size > 0:
online_dataset.add_data(
make_spoof_data_frames(n_episodes=2, n_frames_per_episode=online_dataset_size // 2)
make_spoof_data_frames(
n_episodes=2, n_frames_per_episode=online_dataset_size // 2
)
)
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=online_sampling_ratio
offline_dataset,
online_dataset=online_dataset,
online_sampling_ratio=online_sampling_ratio,
)
if offline_dataset_size == 0 or online_dataset_size == 0:
expected_weights = torch.ones(offline_dataset_size + online_dataset_size)
elif online_sampling_ratio == 0:
expected_weights = torch.cat([torch.ones(offline_dataset_size), torch.zeros(online_dataset_size)])
expected_weights = torch.cat(
[torch.ones(offline_dataset_size), torch.zeros(online_dataset_size)]
)
elif online_sampling_ratio == 1:
expected_weights = torch.cat([torch.zeros(offline_dataset_size), torch.ones(online_dataset_size)])
expected_weights = torch.cat(
[torch.zeros(offline_dataset_size), torch.ones(online_dataset_size)]
)
expected_weights /= expected_weights.sum()
torch.testing.assert_close(weights, expected_weights)
def test_compute_sampler_weights_nontrivial_ratio(lerobot_dataset_factory, tmp_path):
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=4)
offline_dataset = lerobot_dataset_factory(
tmp_path, total_episodes=1, total_frames=4
)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
online_dataset.add_data(
make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2)
)
online_sampling_ratio = 0.8
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=online_sampling_ratio
offline_dataset,
online_dataset=online_dataset,
online_sampling_ratio=online_sampling_ratio,
)
torch.testing.assert_close(
weights, torch.tensor([0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
)
def test_compute_sampler_weights_nontrivial_ratio_and_drop_last_n(lerobot_dataset_factory, tmp_path):
def test_compute_sampler_weights_nontrivial_ratio_and_drop_last_n(
lerobot_dataset_factory, tmp_path
):
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=4)
offline_dataset = lerobot_dataset_factory(
tmp_path, total_episodes=1, total_frames=4
)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
online_dataset.add_data(
make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2)
)
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=0.8, online_drop_n_last_frames=1
offline_dataset,
online_dataset=online_dataset,
online_sampling_ratio=0.8,
online_drop_n_last_frames=1,
)
torch.testing.assert_close(
weights, torch.tensor([0.05, 0.05, 0.05, 0.05, 0.2, 0.0, 0.2, 0.0, 0.2, 0.0, 0.2, 0.0])
@@ -268,9 +303,13 @@ def test_compute_sampler_weights_nontrivial_ratio_and_drop_last_n(lerobot_datase
def test_compute_sampler_weights_drop_n_last_frames(lerobot_dataset_factory, tmp_path):
"""Note: test copied from test_sampler."""
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=2)
offline_dataset = lerobot_dataset_factory(
tmp_path, total_episodes=1, total_frames=2
)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
online_dataset.add_data(
make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2)
)
weights = compute_sampler_weights(
offline_dataset,

View File

@@ -15,7 +15,9 @@
# limitations under the License.
from datasets import Dataset
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.push_dataset_to_hub.utils import (
calculate_episode_data_index,
)
from lerobot.common.datasets.sampler import EpisodeAwareSampler
from lerobot.common.datasets.utils import (
hf_transform_to_torch,