forked from tangger/lerobot
feat(pipeline): universal processor for LeRobot (#1431)
* Refactor observation preprocessing to use a modular pipeline system - Introduced `RobotPipeline` and `ObservationProcessor` for handling observation transformations. - Updated `preprocess_observation` to maintain backward compatibility while leveraging the new pipeline. - Added tests for the new processing components and ensured they match the original functionality. - Removed hardcoded logic in favor of a more flexible, composable architecture. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Refactor observation processing and improve modularity - Updated `ObservationProcessor` to enhance the modular design for processing observations. - Cleaned up imports and improved code readability by removing unnecessary lines and comments. - Ensured backward compatibility while integrating new processing components. - Added tests to validate the functionality of the updated processing architecture. * Remove redundant tests for None observation and serialization methods in `test_observation_processor.py` to streamline the test suite and improve maintainability. * Refactor processing architecture to use RobotProcessor - Replaced instances of RobotPipeline with RobotProcessor across the codebase for improved modularity and clarity. - Introduced ProcessorStepRegistry for better management of processing steps. - Updated relevant documentation and tests to reflect the new processing structure. - Enhanced the save/load functionality to support the new processor design. - Added a model card template for RobotProcessor to facilitate sharing and documentation. * Add RobotProcessor tutorial to documentation - Introduced a new tutorial on using RobotProcessor for preprocessing robot data. - Added a section in the table of contents for easy navigation to the new tutorial. - The tutorial covers key concepts, real-world scenarios, and practical examples for effective use of the RobotProcessor pipeline. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Add normalization processor and related components - Introduced `NormalizationProcessor` to handle both observation normalization and action unnormalization. - Added `ObservationNormalizer` and `ActionUnnormalizer` classes for specific normalization tasks. - Updated `__init__.py` to include the new `NormalizationProcessor` in the module exports. - Enhanced `ObservationProcessor` with registration in the `ProcessorStepRegistry` for better modularity. - Created `RenameProcessor` for renaming keys in observations, improving flexibility in data processing. * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * Enhance processing architecture with new components - Added `RenameProcessor` to facilitate key renaming in observations, improving data handling flexibility. - Updated `__init__.py` to include `RenameProcessor` in module exports. - Refactored `NormalizationProcessor` and `ObservationNormalizer` to use `rsplit` for better key handling. - Introduced comprehensive tests for `NormalizationProcessor` and `RenameProcessor` to ensure functionality and robustness. * chore (docs): add docstring for processor * fix (test): test factory * fix(test): policies * Update tests/processor/test_observation_processor.py Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * chore(test): add suggestion made by copilot regarding numpy test * fix(test): import issue * Refactor normalization components and update tests - Renamed `ObservationNormalizer` to `NormalizerProcessor` and `ActionUnnormalizer` to `UnnormalizerProcessor` for clarity. - Consolidated normalization logic for both observations and actions into `NormalizerProcessor` and `UnnormalizerProcessor`. - Updated tests to reflect the new class names and ensure proper functionality of normalization and unnormalization processes. - Enhanced handling of missing statistics in normalization processes. * chore (docstrin):Improve docstring for NormalizerProcessor * feat (device processor): Implement device processor * chore (batch handling): Enhance processing components with batch conversion utilities * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * fix(test): linting issue * chore (output format): improves output format * chore (type): add typing for multiprocess envs * feat (overrides): Implement support for loading processors with parameter overrides - Added the ability to provide non-serializable objects when loading processors from saved configurations using the `overrides` parameter. - Enhanced error handling for invalid override keys and instantiation errors. - Updated documentation and examples to illustrate the usage of overrides for both registered and unregistered steps. - Added comprehensive tests to validate the new functionality and ensure backward compatibility. * chore(normalization): addressing comments from copilot * chore(learner): nit comment from copilot * feat(pipeline): Enhance step_through method to support both tuple and dict inputs * refactor(pipeline): Simplify observation and padding data handling in batch transitions * Apply suggestions from code review Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Introduce ComplementaryDataProcessor for handling complementary data in transitions * [pre-commit.ci] auto fixes from pre-commit.com hooks for more information, see https://pre-commit.ci * refactor(pipeline): Transition from tuple to dictionary format for EnvTransition - Updated the EnvTransition structure to use a dictionary format instead of a tuple, enhancing readability and maintainability. - Replaced instances of TransitionIndex with TransitionKey for accessing transition components. - Adjusted related processing functions and tests to accommodate the new dictionary format, ensuring consistent handling of transitions across the codebase. * refactor(observation_processor): Improve observation processing by using constants and simplifying pixel handling - Introduced constants for observation keys to enhance readability. - Streamlined the handling of the "pixels" key by copying observations first and processing images more clearly. - Updated the environment state and agent position assignments to use the new constants, improving maintainability. * feat(pipeline): Add hook unregistration functionality and enhance documentation - Implemented methods to unregister before, after, and reset hooks in the RobotProcessor class, allowing for more flexible hook management. - Enhanced documentation to clarify hook execution semantics and the implications of modifying transitions within hooks. - Added comprehensive tests to verify the correct behavior of hook registration and unregistration, including error handling for non-existent hooks. * refactor(pipeline): Clarify hook behavior and improve documentation - Updated the RobotProcessor class to ensure hooks are strictly for observation and do not modify transitions, enhancing clarity and maintainability. - Refactored hook registration methods to reflect the new behavior, ensuring they accept only functions that do not return modified transitions. - Enhanced documentation to clearly outline the purpose of hooks and their execution semantics. - Added tests to verify that hooks are not executed during the step_through method while ensuring they function correctly during the __call__ method. * feat(pipeline): Add __repr__ method to RobotProcessor for improved readability - Implemented a __repr__ method in the RobotProcessor class to provide a clear string representation of the processor, including step names and optional parameters like name and seed. - Added comprehensive tests to validate the __repr__ output for various scenarios, including empty processors, single and multiple steps, custom names, and seed values. - Ensured that the representation handles long lists of steps with truncation for better readability. * chore(pipeline): Move _CFG_NAME along other class member * refactor(pipeline): Utilize get_safe_torch_device for device assignment - Replaced direct torch.device instantiation with get_safe_torch_device to ensure safe device handling. - This change enhances code readability and maintains consistency in device management across the RobotProcessor class. * refactor(pipeline): Enhance state filename generation and profiling method - Updated state filename generation to use the registry name when available, improving clarity in saved files. - Modified the profile_steps method to include a warmup_runs parameter, allowing for more controlled performance profiling. - Ensured consistent conditions during profiling by deep copying transitions for each run, enhancing accuracy in timing results. * chore(doc): address pip install commant lerobot that not exist yet * feat(pipeline): Enhance configuration filename handling and state file naming - Introduced support for custom configuration filenames in the `save_pretrained` method, allowing users to specify a filename instead of the default. - Improved state file naming to include step indices, preventing conflicts when multiple processors of the same type are saved. - Added automatic detection for configuration files when loading from a directory, with error handling for multiple files. - Updated tests to validate new features, including custom filenames and automatic config detection. * refactor(pipeline): Improve state file naming conventions for clarity and uniqueness - Enhanced state file naming to include the processor's sanitized name, ensuring uniqueness when multiple processors are saved in the same directory. - Updated tests to reflect changes in state file naming, verifying that filenames now include the processor name and step indices to prevent conflicts. - Added a new test to validate state file naming when using multiple processors, ensuring distinct filenames for each processor's state files. * docs(pipeline): Add clarification for repo name sanitization process * Feat/pipeline add feature contract (#1637) * Add feature contract to pipelinestep and pipeline * Add tests * Add processor tests * PR feedback * encorperate pr feedback * type in doc * oops * docs(pipeline): Clarify transition handling and hook behavior - Updated documentation to specify that hooks always receive transitions in EnvTransition format, ensuring consistent behavior across input formats. - Refactored the step_through method to yield only EnvTransition objects, regardless of the input format, and updated related tests to reflect this change. - Enhanced test assertions to verify the structure of results and the correctness of processing steps. * refactor(pipeline): Remove to() method for device management - Eliminated the to() method from RobotProcessor, which was responsible for moving tensor states to specified devices. - Removed associated unit tests that validated the functionality of the to() method across various scenarios. - Streamlined the pipeline code by focusing on other device management strategies. * refactor(pipeline): Remove model card generation and streamline processor methods - Eliminated the _generate_model_card method from RobotProcessor, which was responsible for generating README.md files from a template. - Updated save_pretrained method to remove model card generation, focusing on serialization of processor definitions and parameters. - Added default implementations for get_config, state_dict, load_state_dict, reset, and feature_contract methods in various processor classes to enhance consistency and usability. * refactor(observation): Streamline observation preprocessing and remove unused processor methods - Updated the `preprocess_observation` function to enhance image handling and ensure proper tensor formatting. - Removed the `RobotProcessor` and associated transition handling from the `rollout` function, simplifying the observation processing flow. - Integrated direct calls to `preprocess_observation` for improved clarity and efficiency in the evaluation script. * refactor(pipeline): Rename parameters for clarity and enhance save/load functionality - Updated parameter names in the save_pretrained and from_pretrained methods for improved readability, changing destination_path to save_directory and source to pretrained_model_name_or_path. - Enhanced the save_pretrained method to ensure directory creation and file handling is consistent with the new parameter names. - Streamlined the loading process in from_pretrained to utilize loaded_config for better clarity and maintainability. * refactor(pipeline): minor improvements (#1684) * chore(pipeline): remove unused features + device torch + envtransition keys * refactor(pipeline): ImageProcessor & StateProcessor are both implemented directly in VanillaObservationPRocessor * refactor(pipeline): RenameProcessor now inherits from ObservationProcessor + remove unused code * test(pipeline): fix broken test after refactors * docs(pipeline): update docstrings VanillaObservationProcessor * chore(pipeline): move None check to base pipeline classes --------- Signed-off-by: Adil Zouitine <adilzouitinegm@gmail.com> Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com> Co-authored-by: Copilot <175728472+Copilot@users.noreply.github.com> Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com> Co-authored-by: Pepijn <138571049+pkooij@users.noreply.github.com> Co-authored-by: Steven Palma <imstevenpmwork@ieee.org>
This commit is contained in:
628
tests/processor/test_normalize_processor.py
Normal file
628
tests/processor/test_normalize_processor.py
Normal file
@@ -0,0 +1,628 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from unittest.mock import Mock
|
||||
|
||||
import numpy as np
|
||||
import pytest
|
||||
import torch
|
||||
|
||||
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
|
||||
from lerobot.processor.normalize_processor import (
|
||||
NormalizerProcessor,
|
||||
UnnormalizerProcessor,
|
||||
_convert_stats_to_tensors,
|
||||
)
|
||||
from lerobot.processor.pipeline import RobotProcessor, TransitionKey
|
||||
|
||||
|
||||
def create_transition(
|
||||
observation=None, action=None, reward=None, done=None, truncated=None, info=None, complementary_data=None
|
||||
):
|
||||
"""Helper to create an EnvTransition dictionary."""
|
||||
return {
|
||||
TransitionKey.OBSERVATION: observation,
|
||||
TransitionKey.ACTION: action,
|
||||
TransitionKey.REWARD: reward,
|
||||
TransitionKey.DONE: done,
|
||||
TransitionKey.TRUNCATED: truncated,
|
||||
TransitionKey.INFO: info,
|
||||
TransitionKey.COMPLEMENTARY_DATA: complementary_data,
|
||||
}
|
||||
|
||||
|
||||
def test_numpy_conversion():
|
||||
stats = {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert isinstance(tensor_stats["observation.image"]["mean"], torch.Tensor)
|
||||
assert isinstance(tensor_stats["observation.image"]["std"], torch.Tensor)
|
||||
assert torch.allclose(tensor_stats["observation.image"]["mean"], torch.tensor([0.5, 0.5, 0.5]))
|
||||
assert torch.allclose(tensor_stats["observation.image"]["std"], torch.tensor([0.2, 0.2, 0.2]))
|
||||
|
||||
|
||||
def test_tensor_conversion():
|
||||
stats = {
|
||||
"action": {
|
||||
"mean": torch.tensor([0.0, 0.0]),
|
||||
"std": torch.tensor([1.0, 1.0]),
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert tensor_stats["action"]["mean"].dtype == torch.float32
|
||||
assert tensor_stats["action"]["std"].dtype == torch.float32
|
||||
|
||||
|
||||
def test_scalar_conversion():
|
||||
stats = {
|
||||
"reward": {
|
||||
"mean": 0.5,
|
||||
"std": 0.1,
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert torch.allclose(tensor_stats["reward"]["mean"], torch.tensor(0.5))
|
||||
assert torch.allclose(tensor_stats["reward"]["std"], torch.tensor(0.1))
|
||||
|
||||
|
||||
def test_list_conversion():
|
||||
stats = {
|
||||
"observation.state": {
|
||||
"min": [0.0, -1.0, -2.0],
|
||||
"max": [1.0, 1.0, 2.0],
|
||||
}
|
||||
}
|
||||
tensor_stats = _convert_stats_to_tensors(stats)
|
||||
|
||||
assert torch.allclose(tensor_stats["observation.state"]["min"], torch.tensor([0.0, -1.0, -2.0]))
|
||||
assert torch.allclose(tensor_stats["observation.state"]["max"], torch.tensor([1.0, 1.0, 2.0]))
|
||||
|
||||
|
||||
def test_unsupported_type():
|
||||
stats = {
|
||||
"bad_key": {
|
||||
"mean": "string_value",
|
||||
}
|
||||
}
|
||||
with pytest.raises(TypeError, match="Unsupported type"):
|
||||
_convert_stats_to_tensors(stats)
|
||||
|
||||
|
||||
# Helper functions to create feature maps and norm maps
|
||||
def _create_observation_features():
|
||||
return {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_observation_norm_map():
|
||||
return {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.STATE: NormalizationMode.MIN_MAX,
|
||||
}
|
||||
|
||||
|
||||
# Fixtures for observation normalisation tests using NormalizerProcessor
|
||||
@pytest.fixture
|
||||
def observation_stats():
|
||||
return {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
},
|
||||
"observation.state": {
|
||||
"min": np.array([0.0, -1.0]),
|
||||
"max": np.array([1.0, 1.0]),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def observation_normalizer(observation_stats):
|
||||
"""Return a NormalizerProcessor that only has observation stats (no action)."""
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
return NormalizerProcessor(features=features, norm_map=norm_map, stats=observation_stats)
|
||||
|
||||
|
||||
def test_mean_std_normalization(observation_normalizer):
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = observation_normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check mean/std normalization
|
||||
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
|
||||
assert torch.allclose(normalized_obs["observation.image"], expected_image)
|
||||
|
||||
|
||||
def test_min_max_normalization(observation_normalizer):
|
||||
observation = {
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = observation_normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Check min/max normalization to [-1, 1]
|
||||
# For state[0]: 2 * (0.5 - 0.0) / (1.0 - 0.0) - 1 = 0.0
|
||||
# For state[1]: 2 * (0.0 - (-1.0)) / (1.0 - (-1.0)) - 1 = 0.0
|
||||
expected_state = torch.tensor([0.0, 0.0])
|
||||
assert torch.allclose(normalized_obs["observation.state"], expected_state, atol=1e-6)
|
||||
|
||||
|
||||
def test_selective_normalization(observation_stats):
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
normalizer = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=observation_stats, normalize_keys={"observation.image"}
|
||||
)
|
||||
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
# Only image should be normalized
|
||||
assert torch.allclose(normalized_obs["observation.image"], (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2)
|
||||
# State should remain unchanged
|
||||
assert torch.allclose(normalized_obs["observation.state"], observation["observation.state"])
|
||||
|
||||
|
||||
@pytest.mark.skipif(not torch.cuda.is_available(), reason="CUDA not available")
|
||||
def test_device_compatibility(observation_stats):
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=observation_stats)
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]).cuda(),
|
||||
}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
normalized_transition = normalizer(transition)
|
||||
normalized_obs = normalized_transition[TransitionKey.OBSERVATION]
|
||||
|
||||
assert normalized_obs["observation.image"].device.type == "cuda"
|
||||
|
||||
|
||||
def test_from_lerobot_dataset():
|
||||
# Mock dataset
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {
|
||||
"observation.image": {"mean": [0.5], "std": [0.2]},
|
||||
"action": {"mean": [0.0], "std": [1.0]},
|
||||
}
|
||||
|
||||
features = {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"action": PolicyFeature(FeatureType.ACTION, (1,)),
|
||||
}
|
||||
norm_map = {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
normalizer = NormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
|
||||
# Both observation and action statistics should be present in tensor stats
|
||||
assert "observation.image" in normalizer._tensor_stats
|
||||
assert "action" in normalizer._tensor_stats
|
||||
|
||||
|
||||
def test_state_dict_save_load(observation_normalizer):
|
||||
# Save state
|
||||
state_dict = observation_normalizer.state_dict()
|
||||
|
||||
# Create new normalizer and load state
|
||||
features = _create_observation_features()
|
||||
norm_map = _create_observation_norm_map()
|
||||
new_normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats={})
|
||||
new_normalizer.load_state_dict(state_dict)
|
||||
|
||||
# Test that it works the same
|
||||
observation = {"observation.image": torch.tensor([0.7, 0.5, 0.3])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result1 = observation_normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
result2 = new_normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
|
||||
assert torch.allclose(result1["observation.image"], result2["observation.image"])
|
||||
|
||||
|
||||
# Fixtures for ActionUnnormalizer tests
|
||||
@pytest.fixture
|
||||
def action_stats_mean_std():
|
||||
return {
|
||||
"mean": np.array([0.0, 0.0, 0.0]),
|
||||
"std": np.array([1.0, 2.0, 0.5]),
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def action_stats_min_max():
|
||||
return {
|
||||
"min": np.array([-1.0, -2.0, 0.0]),
|
||||
"max": np.array([1.0, 2.0, 1.0]),
|
||||
}
|
||||
|
||||
|
||||
def _create_action_features():
|
||||
return {
|
||||
"action": PolicyFeature(FeatureType.ACTION, (3,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_action_norm_map_mean_std():
|
||||
return {
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
|
||||
def _create_action_norm_map_min_max():
|
||||
return {
|
||||
FeatureType.ACTION: NormalizationMode.MIN_MAX,
|
||||
}
|
||||
|
||||
|
||||
def test_mean_std_unnormalization(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
normalized_action = torch.tensor([1.0, -0.5, 2.0])
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
# action * std + mean
|
||||
expected = torch.tensor([1.0 * 1.0 + 0.0, -0.5 * 2.0 + 0.0, 2.0 * 0.5 + 0.0])
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_min_max_unnormalization(action_stats_min_max):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_min_max()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_min_max}
|
||||
)
|
||||
|
||||
# Actions in [-1, 1]
|
||||
normalized_action = torch.tensor([0.0, -1.0, 1.0])
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
# Map from [-1, 1] to [min, max]
|
||||
# (action + 1) / 2 * (max - min) + min
|
||||
expected = torch.tensor(
|
||||
[
|
||||
(0.0 + 1) / 2 * (1.0 - (-1.0)) + (-1.0), # 0.0
|
||||
(-1.0 + 1) / 2 * (2.0 - (-2.0)) + (-2.0), # -2.0
|
||||
(1.0 + 1) / 2 * (1.0 - 0.0) + 0.0, # 1.0
|
||||
]
|
||||
)
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_numpy_action_input(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
normalized_action = np.array([1.0, -0.5, 2.0], dtype=np.float32)
|
||||
transition = create_transition(action=normalized_action)
|
||||
|
||||
unnormalized_transition = unnormalizer(transition)
|
||||
unnormalized_action = unnormalized_transition[TransitionKey.ACTION]
|
||||
|
||||
assert isinstance(unnormalized_action, torch.Tensor)
|
||||
expected = torch.tensor([1.0, -1.0, 1.0])
|
||||
assert torch.allclose(unnormalized_action, expected)
|
||||
|
||||
|
||||
def test_none_action(action_stats_mean_std):
|
||||
features = _create_action_features()
|
||||
norm_map = _create_action_norm_map_mean_std()
|
||||
unnormalizer = UnnormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats={"action": action_stats_mean_std}
|
||||
)
|
||||
|
||||
transition = create_transition()
|
||||
result = unnormalizer(transition)
|
||||
|
||||
# Should return transition unchanged
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_action_from_lerobot_dataset():
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {"action": {"mean": [0.0], "std": [1.0]}}
|
||||
features = {"action": PolicyFeature(FeatureType.ACTION, (1,))}
|
||||
norm_map = {FeatureType.ACTION: NormalizationMode.MEAN_STD}
|
||||
unnormalizer = UnnormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
assert "mean" in unnormalizer._tensor_stats["action"]
|
||||
|
||||
|
||||
# Fixtures for NormalizerProcessor tests
|
||||
@pytest.fixture
|
||||
def full_stats():
|
||||
return {
|
||||
"observation.image": {
|
||||
"mean": np.array([0.5, 0.5, 0.5]),
|
||||
"std": np.array([0.2, 0.2, 0.2]),
|
||||
},
|
||||
"observation.state": {
|
||||
"min": np.array([0.0, -1.0]),
|
||||
"max": np.array([1.0, 1.0]),
|
||||
},
|
||||
"action": {
|
||||
"mean": np.array([0.0, 0.0]),
|
||||
"std": np.array([1.0, 2.0]),
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def _create_full_features():
|
||||
return {
|
||||
"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96)),
|
||||
"observation.state": PolicyFeature(FeatureType.STATE, (2,)),
|
||||
"action": PolicyFeature(FeatureType.ACTION, (2,)),
|
||||
}
|
||||
|
||||
|
||||
def _create_full_norm_map():
|
||||
return {
|
||||
FeatureType.VISUAL: NormalizationMode.MEAN_STD,
|
||||
FeatureType.STATE: NormalizationMode.MIN_MAX,
|
||||
FeatureType.ACTION: NormalizationMode.MEAN_STD,
|
||||
}
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def normalizer_processor(full_stats):
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
return NormalizerProcessor(features=features, norm_map=norm_map, stats=full_stats)
|
||||
|
||||
|
||||
def test_combined_normalization(normalizer_processor):
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
processed_transition = normalizer_processor(transition)
|
||||
|
||||
# Check normalized observations
|
||||
processed_obs = processed_transition[TransitionKey.OBSERVATION]
|
||||
expected_image = (torch.tensor([0.7, 0.5, 0.3]) - 0.5) / 0.2
|
||||
assert torch.allclose(processed_obs["observation.image"], expected_image)
|
||||
|
||||
# Check normalized action
|
||||
processed_action = processed_transition[TransitionKey.ACTION]
|
||||
expected_action = torch.tensor([(1.0 - 0.0) / 1.0, (-0.5 - 0.0) / 2.0])
|
||||
assert torch.allclose(processed_action, expected_action)
|
||||
|
||||
# Check other fields remain unchanged
|
||||
assert processed_transition[TransitionKey.REWARD] == 1.0
|
||||
assert not processed_transition[TransitionKey.DONE]
|
||||
|
||||
|
||||
def test_processor_from_lerobot_dataset(full_stats):
|
||||
# Mock dataset
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = full_stats
|
||||
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
|
||||
processor = NormalizerProcessor.from_lerobot_dataset(
|
||||
mock_dataset, features, norm_map, normalize_keys={"observation.image"}
|
||||
)
|
||||
|
||||
assert processor.normalize_keys == {"observation.image"}
|
||||
assert "observation.image" in processor._tensor_stats
|
||||
assert "action" in processor._tensor_stats
|
||||
|
||||
|
||||
def test_get_config(full_stats):
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
processor = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=full_stats, normalize_keys={"observation.image"}, eps=1e-6
|
||||
)
|
||||
|
||||
config = processor.get_config()
|
||||
expected_config = {
|
||||
"normalize_keys": ["observation.image"],
|
||||
"eps": 1e-6,
|
||||
"features": {
|
||||
"observation.image": {"type": "VISUAL", "shape": (3, 96, 96)},
|
||||
"observation.state": {"type": "STATE", "shape": (2,)},
|
||||
"action": {"type": "ACTION", "shape": (2,)},
|
||||
},
|
||||
"norm_map": {
|
||||
"VISUAL": "MEAN_STD",
|
||||
"STATE": "MIN_MAX",
|
||||
"ACTION": "MEAN_STD",
|
||||
},
|
||||
}
|
||||
assert config == expected_config
|
||||
|
||||
|
||||
def test_integration_with_robot_processor(normalizer_processor):
|
||||
"""Test integration with RobotProcessor pipeline"""
|
||||
robot_processor = RobotProcessor([normalizer_processor])
|
||||
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
processed_transition = robot_processor(transition)
|
||||
|
||||
# Verify the processing worked
|
||||
assert isinstance(processed_transition[TransitionKey.OBSERVATION], dict)
|
||||
assert isinstance(processed_transition[TransitionKey.ACTION], torch.Tensor)
|
||||
|
||||
|
||||
# Edge case tests
|
||||
def test_empty_observation():
|
||||
stats = {"observation.image": {"mean": [0.5], "std": [0.2]}}
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=stats)
|
||||
|
||||
transition = create_transition()
|
||||
result = normalizer(transition)
|
||||
|
||||
assert result == transition
|
||||
|
||||
|
||||
def test_empty_stats():
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats={})
|
||||
observation = {"observation.image": torch.tensor([0.5])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
result = normalizer(transition)
|
||||
# Should return observation unchanged since no stats are available
|
||||
assert torch.allclose(
|
||||
result[TransitionKey.OBSERVATION]["observation.image"], observation["observation.image"]
|
||||
)
|
||||
|
||||
|
||||
def test_partial_stats():
|
||||
"""If statistics are incomplete, the value should pass through unchanged."""
|
||||
stats = {"observation.image": {"mean": [0.5]}} # Missing std / (min,max)
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
normalizer = NormalizerProcessor(features=features, norm_map=norm_map, stats=stats)
|
||||
observation = {"observation.image": torch.tensor([0.7])}
|
||||
transition = create_transition(observation=observation)
|
||||
|
||||
processed = normalizer(transition)[TransitionKey.OBSERVATION]
|
||||
assert torch.allclose(processed["observation.image"], observation["observation.image"])
|
||||
|
||||
|
||||
def test_missing_action_stats_no_error():
|
||||
mock_dataset = Mock()
|
||||
mock_dataset.meta.stats = {"observation.image": {"mean": [0.5], "std": [0.2]}}
|
||||
|
||||
features = {"observation.image": PolicyFeature(FeatureType.VISUAL, (3, 96, 96))}
|
||||
norm_map = {FeatureType.VISUAL: NormalizationMode.MEAN_STD}
|
||||
|
||||
processor = UnnormalizerProcessor.from_lerobot_dataset(mock_dataset, features, norm_map)
|
||||
# The tensor stats should not contain the 'action' key
|
||||
assert "action" not in processor._tensor_stats
|
||||
|
||||
|
||||
def test_serialization_roundtrip(full_stats):
|
||||
"""Test that features and norm_map can be serialized and deserialized correctly."""
|
||||
features = _create_full_features()
|
||||
norm_map = _create_full_norm_map()
|
||||
original_processor = NormalizerProcessor(
|
||||
features=features, norm_map=norm_map, stats=full_stats, normalize_keys={"observation.image"}, eps=1e-6
|
||||
)
|
||||
|
||||
# Get config (serialization)
|
||||
config = original_processor.get_config()
|
||||
|
||||
# Create a new processor from the config (deserialization)
|
||||
new_processor = NormalizerProcessor(
|
||||
features=config["features"],
|
||||
norm_map=config["norm_map"],
|
||||
stats=full_stats,
|
||||
normalize_keys=set(config["normalize_keys"]),
|
||||
eps=config["eps"],
|
||||
)
|
||||
|
||||
# Test that both processors work the same way
|
||||
observation = {
|
||||
"observation.image": torch.tensor([0.7, 0.5, 0.3]),
|
||||
"observation.state": torch.tensor([0.5, 0.0]),
|
||||
}
|
||||
action = torch.tensor([1.0, -0.5])
|
||||
transition = create_transition(
|
||||
observation=observation,
|
||||
action=action,
|
||||
reward=1.0,
|
||||
done=False,
|
||||
truncated=False,
|
||||
info={},
|
||||
complementary_data={},
|
||||
)
|
||||
|
||||
result1 = original_processor(transition)
|
||||
result2 = new_processor(transition)
|
||||
|
||||
# Compare results
|
||||
assert torch.allclose(
|
||||
result1[TransitionKey.OBSERVATION]["observation.image"],
|
||||
result2[TransitionKey.OBSERVATION]["observation.image"],
|
||||
)
|
||||
assert torch.allclose(result1[TransitionKey.ACTION], result2[TransitionKey.ACTION])
|
||||
|
||||
# Verify features and norm_map are correctly reconstructed
|
||||
assert new_processor.features.keys() == original_processor.features.keys()
|
||||
for key in new_processor.features:
|
||||
assert new_processor.features[key].type == original_processor.features[key].type
|
||||
assert new_processor.features[key].shape == original_processor.features[key].shape
|
||||
|
||||
assert new_processor.norm_map == original_processor.norm_map
|
||||
Reference in New Issue
Block a user