forked from tangger/lerobot
Remove offline training, refactor train.py and logging/checkpointing (#670)
Co-authored-by: Remi <remi.cadene@huggingface.co>
This commit is contained in:
163
lerobot/common/utils/logging_utils.py
Normal file
163
lerobot/common/utils/logging_utils.py
Normal file
@@ -0,0 +1,163 @@
|
||||
#!/usr/bin/env python
|
||||
|
||||
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from typing import Any
|
||||
|
||||
from lerobot.common.utils.utils import format_big_number
|
||||
|
||||
|
||||
class AverageMeter:
|
||||
"""
|
||||
Computes and stores the average and current value
|
||||
Adapted from https://github.com/pytorch/examples/blob/main/imagenet/main.py
|
||||
"""
|
||||
|
||||
def __init__(self, name: str, fmt: str = ":f"):
|
||||
self.name = name
|
||||
self.fmt = fmt
|
||||
self.reset()
|
||||
|
||||
def reset(self) -> None:
|
||||
self.val = 0.0
|
||||
self.avg = 0.0
|
||||
self.sum = 0.0
|
||||
self.count = 0.0
|
||||
|
||||
def update(self, val: float, n: int = 1) -> None:
|
||||
self.val = val
|
||||
self.sum += val * n
|
||||
self.count += n
|
||||
self.avg = self.sum / self.count
|
||||
|
||||
def __str__(self):
|
||||
fmtstr = "{name}:{avg" + self.fmt + "}"
|
||||
return fmtstr.format(**self.__dict__)
|
||||
|
||||
|
||||
class MetricsTracker:
|
||||
"""
|
||||
A helper class to track and log metrics over time.
|
||||
|
||||
Usage pattern:
|
||||
|
||||
```python
|
||||
# initialize, potentially with non-zero initial step (e.g. if resuming run)
|
||||
metrics = {"loss": AverageMeter("loss", ":.3f")}
|
||||
train_metrics = MetricsTracker(cfg, dataset, metrics, initial_step=step)
|
||||
|
||||
# update metrics derived from step (samples, episodes, epochs) at each training step
|
||||
train_metrics.step()
|
||||
|
||||
# update various metrics
|
||||
loss = policy.forward(batch)
|
||||
train_metrics.loss = loss
|
||||
|
||||
# display current metrics
|
||||
logging.info(train_metrics)
|
||||
|
||||
# export for wandb
|
||||
wandb.log(train_metrics.to_dict())
|
||||
|
||||
# reset averages after logging
|
||||
train_metrics.reset_averages()
|
||||
```
|
||||
"""
|
||||
|
||||
__keys__ = [
|
||||
"_batch_size",
|
||||
"_num_frames",
|
||||
"_avg_samples_per_ep",
|
||||
"metrics",
|
||||
"steps",
|
||||
"samples",
|
||||
"episodes",
|
||||
"epochs",
|
||||
]
|
||||
|
||||
def __init__(
|
||||
self,
|
||||
batch_size: int,
|
||||
num_frames: int,
|
||||
num_episodes: int,
|
||||
metrics: dict[str, AverageMeter],
|
||||
initial_step: int = 0,
|
||||
):
|
||||
self.__dict__.update({k: None for k in self.__keys__})
|
||||
self._batch_size = batch_size
|
||||
self._num_frames = num_frames
|
||||
self._avg_samples_per_ep = num_frames / num_episodes
|
||||
self.metrics = metrics
|
||||
|
||||
self.steps = initial_step
|
||||
# A sample is an (observation,action) pair, where observation and action
|
||||
# can be on multiple timestamps. In a batch, we have `batch_size` number of samples.
|
||||
self.samples = self.steps * self._batch_size
|
||||
self.episodes = self.samples / self._avg_samples_per_ep
|
||||
self.epochs = self.samples / self._num_frames
|
||||
|
||||
def __getattr__(self, name: str) -> int | dict[str, AverageMeter] | AverageMeter | Any:
|
||||
if name in self.__dict__:
|
||||
return self.__dict__[name]
|
||||
elif name in self.metrics:
|
||||
return self.metrics[name]
|
||||
else:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
|
||||
|
||||
def __setattr__(self, name: str, value: Any) -> None:
|
||||
if name in self.__dict__:
|
||||
super().__setattr__(name, value)
|
||||
elif name in self.metrics:
|
||||
self.metrics[name].update(value)
|
||||
else:
|
||||
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
|
||||
|
||||
def step(self) -> None:
|
||||
"""
|
||||
Updates metrics that depend on 'step' for one step.
|
||||
"""
|
||||
self.steps += 1
|
||||
self.samples += self._batch_size
|
||||
self.episodes = self.samples / self._avg_samples_per_ep
|
||||
self.epochs = self.samples / self._num_frames
|
||||
|
||||
def __str__(self) -> str:
|
||||
display_list = [
|
||||
f"step:{format_big_number(self.steps)}",
|
||||
# number of samples seen during training
|
||||
f"smpl:{format_big_number(self.samples)}",
|
||||
# number of episodes seen during training
|
||||
f"ep:{format_big_number(self.episodes)}",
|
||||
# number of time all unique samples are seen
|
||||
f"epch:{self.epochs:.2f}",
|
||||
*[str(m) for m in self.metrics.values()],
|
||||
]
|
||||
return " ".join(display_list)
|
||||
|
||||
def to_dict(self, use_avg: bool = True) -> dict[str, int | float]:
|
||||
"""
|
||||
Returns the current metric values (or averages if `use_avg=True`) as a dict.
|
||||
"""
|
||||
return {
|
||||
"steps": self.steps,
|
||||
"samples": self.samples,
|
||||
"episodes": self.episodes,
|
||||
"epochs": self.epochs,
|
||||
**{k: m.avg if use_avg else m.val for k, m in self.metrics.items()},
|
||||
}
|
||||
|
||||
def reset_averages(self) -> None:
|
||||
"""Resets average meters."""
|
||||
for m in self.metrics.values():
|
||||
m.reset()
|
||||
Reference in New Issue
Block a user