Remove dataset consolidate (#752)

This commit is contained in:
Simon Alibert
2025-02-19 16:02:54 +01:00
committed by GitHub
parent 6fe42a72db
commit 969ef745a2
6 changed files with 93 additions and 128 deletions

View File

@@ -184,8 +184,7 @@ def test_add_frame(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert len(dataset) == 1
assert dataset[0]["task"] == "Dummy task"
@@ -197,8 +196,7 @@ def test_add_frame_state_1d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2])
@@ -207,8 +205,7 @@ def test_add_frame_state_2d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4])
@@ -217,8 +214,7 @@ def test_add_frame_state_3d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3])
@@ -227,8 +223,7 @@ def test_add_frame_state_4d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5])
@@ -237,8 +232,7 @@ def test_add_frame_state_5d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5, 1), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5, 1), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5, 1])
@@ -247,8 +241,7 @@ def test_add_frame_state_numpy(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": np.array([1], dtype=np.float32), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["state"].ndim == 0
@@ -257,8 +250,7 @@ def test_add_frame_string(tmp_path, empty_lerobot_dataset_factory):
features = {"caption": {"dtype": "string", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"caption": "Dummy caption", "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["caption"] == "Dummy caption"
@@ -287,14 +279,13 @@ def test_add_frame_image_wrong_range(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW) * 255, "task": "Dummy task"})
with pytest.raises(FileNotFoundError):
dataset.save_episode(encode_videos=False)
dataset.save_episode()
def test_add_frame_image(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
@@ -302,8 +293,7 @@ def test_add_frame_image(image_dataset):
def test_add_frame_image_h_w_c(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_HWC), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
@@ -312,8 +302,7 @@ def test_add_frame_image_uint8(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": image, "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
@@ -322,8 +311,7 @@ def test_add_frame_image_pil(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": Image.fromarray(image), "task": "Dummy task"})
dataset.save_episode(encode_videos=False)
dataset.consolidate()
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
@@ -338,7 +326,6 @@ def test_image_array_to_pil_image_wrong_range_float_0_255():
# - [ ] test various attributes & state from init and create
# - [ ] test init with episodes and check num_frames
# - [ ] test add_episode
# - [ ] test consolidate
# - [ ] test push_to_hub
# - [ ] test smaller methods