From a4bed41132a3f5ffb05579003a8fece26d188e56 Mon Sep 17 00:00:00 2001 From: Pepijn <138571049+pkooij@users.noreply.github.com> Date: Fri, 3 Oct 2025 12:06:18 +0200 Subject: [PATCH] Improve docs pi (#2110) * Improve docs and add numpy to pi install requirments * fix formatting * update command * remvoe numpy dep --- docs/source/pi0.mdx | 2 +- docs/source/pi05.mdx | 19 ++++++++++++++----- 2 files changed, 15 insertions(+), 6 deletions(-) diff --git a/docs/source/pi0.mdx b/docs/source/pi0.mdx index 10260ee72..d36fe0ce4 100644 --- a/docs/source/pi0.mdx +++ b/docs/source/pi0.mdx @@ -49,7 +49,7 @@ policy.type=pi0 For training π₀, you can use the standard LeRobot training script with the appropriate configuration: ```bash -python src/lerobot/scripts/train.py \ +python src/lerobot/scripts/lerobot_train.py \ --dataset.repo_id=your_dataset \ --policy.type=pi0 \ --output_dir=./outputs/pi0_training \ diff --git a/docs/source/pi05.mdx b/docs/source/pi05.mdx index b777fcd58..b6267fc5e 100644 --- a/docs/source/pi05.mdx +++ b/docs/source/pi05.mdx @@ -51,13 +51,13 @@ policy.type=pi05 Here's a complete training command for finetuning the base π₀.₅ model on your own dataset: ```bash -python src/lerobot/scripts/train.py \ +python src/lerobot/scripts/lerobot_train.py\ --dataset.repo_id=your_dataset \ --policy.type=pi05 \ - --output_dir=./outputs/pi0_training \ - --job_name=pi0_training \ - --policy.repo_id=lerobot/pi05_base \ - --policy.pretrained_path=your_repo_id \ + --output_dir=./outputs/pi05_training \ + --job_name=pi05_training \ + --policy.repo_id=your_repo_id \ + --policy.pretrained_path=lerobot/pi05_base \ --policy.compile_model=true \ --policy.gradient_checkpointing=true \ --wandb.enable=true \ @@ -77,6 +77,15 @@ python src/lerobot/scripts/train.py \ - [lerobot/pi05_base](https://huggingface.co/lerobot/pi05_base) - [lerobot/pi05_libero](https://huggingface.co/lerobot/pi05_libero) (specifically trained on the Libero dataset) +If your dataset is not converted with `quantiles`, you can convert it with the following command: + +```bash +python src/lerobot/datasets/v30/augment_dataset_quantile_stats.py \ + --repo-id=your_dataset \ +``` + +Or train pi05 with this normalization mapping: `--policy.normalization_mapping='{"ACTION": "MEAN_STD", "STATE": "MEAN_STD", "VISUAL": "IDENTITY"}'` + ## Performance Results ### Libero Benchmark Results