forked from tangger/lerobot
Online finetuning runs (sometimes crash because of nans)
This commit is contained in:
@@ -19,6 +19,7 @@ from lerobot.common.logger import Logger
|
||||
from lerobot.common.tdmpc import TDMPC
|
||||
from lerobot.common.utils import set_seed
|
||||
from lerobot.scripts.eval import eval_policy
|
||||
from rl.torchrl.collectors.collectors import SyncDataCollector
|
||||
|
||||
|
||||
@hydra.main(version_base=None, config_name="default", config_path="../configs")
|
||||
@@ -29,8 +30,10 @@ def train(cfg: dict):
|
||||
|
||||
env = make_env(cfg)
|
||||
policy = TDMPC(cfg)
|
||||
# ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
|
||||
ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt"
|
||||
ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
|
||||
policy.step = 25000
|
||||
# ckpt_path = "/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/final.pt"
|
||||
# policy.step = 100000
|
||||
policy.load(ckpt_path)
|
||||
|
||||
td_policy = TensorDictModule(
|
||||
@@ -54,7 +57,7 @@ def train(cfg: dict):
|
||||
strict_length=False,
|
||||
)
|
||||
|
||||
# TODO(rcadene): use PrioritizedReplayBuffer
|
||||
# TODO(rcadene): add PrioritizedSliceSampler inside Simxarm to not have to `sampler.extend(index)` here
|
||||
offline_buffer = SimxarmExperienceReplay(
|
||||
dataset_id,
|
||||
# download="force",
|
||||
@@ -68,9 +71,22 @@ def train(cfg: dict):
|
||||
index = torch.arange(0, num_steps, 1)
|
||||
sampler.extend(index)
|
||||
|
||||
# offline_buffer._storage.device = torch.device("cuda")
|
||||
# offline_buffer._storage._storage.to(torch.device("cuda"))
|
||||
# TODO(rcadene): add online_buffer
|
||||
if cfg.balanced_sampling:
|
||||
online_sampler = PrioritizedSliceSampler(
|
||||
max_capacity=100_000,
|
||||
alpha=0.7,
|
||||
beta=0.9,
|
||||
num_slices=num_traj_per_batch,
|
||||
strict_length=False,
|
||||
)
|
||||
|
||||
online_buffer = TensorDictReplayBuffer(
|
||||
storage=LazyMemmapStorage(100_000),
|
||||
sampler=online_sampler,
|
||||
# batch_size=3,
|
||||
# pin_memory=False,
|
||||
# prefetch=3,
|
||||
)
|
||||
|
||||
# Observation encoder
|
||||
# Dynamics predictor
|
||||
@@ -81,59 +97,80 @@ def train(cfg: dict):
|
||||
|
||||
L = Logger(cfg.log_dir, cfg)
|
||||
|
||||
episode_idx = 0
|
||||
online_episode_idx = 0
|
||||
start_time = time.time()
|
||||
step = 0
|
||||
last_log_step = 0
|
||||
last_save_step = 0
|
||||
|
||||
# TODO(rcadene): remove
|
||||
step = 25000
|
||||
|
||||
while step < cfg.train_steps:
|
||||
is_offline = True
|
||||
num_updates = cfg.episode_length
|
||||
_step = step + num_updates
|
||||
rollout_metrics = {}
|
||||
|
||||
# if step >= cfg.offline_steps:
|
||||
# is_offline = False
|
||||
if step >= cfg.offline_steps:
|
||||
is_offline = False
|
||||
|
||||
# # Collect trajectory
|
||||
# obs = env.reset()
|
||||
# episode = Episode(cfg, obs)
|
||||
# success = False
|
||||
# while not episode.done:
|
||||
# action = policy.act(obs, step=step, t0=episode.first)
|
||||
# obs, reward, done, info = env.step(action.cpu().numpy())
|
||||
# reward = reward_normalizer(reward)
|
||||
# mask = 1.0 if (not done or "TimeLimit.truncated" in info) else 0.0
|
||||
# success = info.get('success', False)
|
||||
# episode += (obs, action, reward, done, mask, success)
|
||||
# assert len(episode) <= cfg.episode_length
|
||||
# buffer += episode
|
||||
# episode_idx += 1
|
||||
# rollout_metrics = {
|
||||
# 'episode_reward': episode.cumulative_reward,
|
||||
# 'episode_success': float(success),
|
||||
# 'episode_length': len(episode)
|
||||
# }
|
||||
# num_updates = len(episode) * cfg.utd
|
||||
# _step = min(step + len(episode), cfg.train_steps)
|
||||
# TODO: use SyncDataCollector for that?
|
||||
rollout = env.rollout(
|
||||
max_steps=cfg.episode_length,
|
||||
policy=td_policy,
|
||||
)
|
||||
assert len(rollout) <= cfg.episode_length
|
||||
rollout["episode"] = torch.tensor(
|
||||
[online_episode_idx] * len(rollout), dtype=torch.int
|
||||
)
|
||||
online_buffer.extend(rollout)
|
||||
|
||||
# Collect trajectory
|
||||
# obs = env.reset()
|
||||
# episode = Episode(cfg, obs)
|
||||
# success = False
|
||||
# while not episode.done:
|
||||
# action = policy.act(obs, step=step, t0=episode.first)
|
||||
# obs, reward, done, info = env.step(action.cpu().numpy())
|
||||
# reward = reward_normalizer(reward)
|
||||
# mask = 1.0 if (not done or "TimeLimit.truncated" in info) else 0.0
|
||||
# success = info.get('success', False)
|
||||
# episode += (obs, action, reward, done, mask, success)
|
||||
|
||||
ep_reward = rollout["next", "reward"].sum()
|
||||
ep_success = rollout["next", "success"].any()
|
||||
|
||||
online_episode_idx += 1
|
||||
rollout_metrics = {
|
||||
# 'episode_reward': episode.cumulative_reward,
|
||||
# 'episode_success': float(success),
|
||||
# 'episode_length': len(episode)
|
||||
"avg_reward": np.nanmean(ep_reward),
|
||||
"pc_success": np.nanmean(ep_success) * 100,
|
||||
}
|
||||
num_updates = len(rollout) * cfg.utd
|
||||
_step = min(step + len(rollout), cfg.train_steps)
|
||||
|
||||
# Update model
|
||||
train_metrics = {}
|
||||
if is_offline:
|
||||
for i in range(num_updates):
|
||||
train_metrics.update(policy.update(offline_buffer, step + i))
|
||||
# else:
|
||||
# for i in range(num_updates):
|
||||
# train_metrics.update(
|
||||
# policy.update(buffer, step + i // cfg.utd,
|
||||
# demo_buffer=offline_buffer if cfg.balanced_sampling else None)
|
||||
# )
|
||||
else:
|
||||
for i in range(num_updates):
|
||||
train_metrics.update(
|
||||
policy.update(
|
||||
online_buffer,
|
||||
step + i // cfg.utd,
|
||||
demo_buffer=offline_buffer if cfg.balanced_sampling else None,
|
||||
)
|
||||
)
|
||||
|
||||
# Log training metrics
|
||||
env_step = int(_step * cfg.action_repeat)
|
||||
common_metrics = {
|
||||
"episode": episode_idx,
|
||||
"episode": online_episode_idx,
|
||||
"step": _step,
|
||||
"env_step": env_step,
|
||||
"total_time": time.time() - start_time,
|
||||
|
||||
Reference in New Issue
Block a user