forked from tangger/lerobot
Add regression tests (#119)
- Add `tests/scripts/save_policy_to_safetensor.py` to generate test artifacts - Add `test_backward_compatibility to test generated outputs from the policies against artifacts
This commit is contained in:
101
tests/scripts/save_policy_to_safetensor.py
Normal file
101
tests/scripts/save_policy_to_safetensor.py
Normal file
@@ -0,0 +1,101 @@
|
||||
import shutil
|
||||
from pathlib import Path
|
||||
|
||||
import torch
|
||||
from safetensors.torch import save_file
|
||||
|
||||
from lerobot.common.datasets.factory import make_dataset
|
||||
from lerobot.common.policies.factory import make_policy
|
||||
from lerobot.common.utils.utils import init_hydra_config, set_global_seed
|
||||
from lerobot.scripts.train import make_optimizer_and_scheduler
|
||||
from tests.utils import DEFAULT_CONFIG_PATH
|
||||
|
||||
|
||||
def get_policy_stats(env_name, policy_name, extra_overrides=None):
|
||||
cfg = init_hydra_config(
|
||||
DEFAULT_CONFIG_PATH,
|
||||
overrides=[
|
||||
f"env={env_name}",
|
||||
f"policy={policy_name}",
|
||||
"device=cpu",
|
||||
]
|
||||
+ extra_overrides,
|
||||
)
|
||||
set_global_seed(1337)
|
||||
dataset = make_dataset(cfg)
|
||||
policy = make_policy(cfg, dataset_stats=dataset.stats)
|
||||
policy.train()
|
||||
optimizer, _ = make_optimizer_and_scheduler(cfg, policy)
|
||||
|
||||
dataloader = torch.utils.data.DataLoader(
|
||||
dataset,
|
||||
num_workers=0,
|
||||
batch_size=cfg.training.batch_size,
|
||||
shuffle=False,
|
||||
)
|
||||
|
||||
batch = next(iter(dataloader))
|
||||
output_dict = policy.forward(batch)
|
||||
output_dict = {k: v for k, v in output_dict.items() if isinstance(v, torch.Tensor)}
|
||||
loss = output_dict["loss"]
|
||||
|
||||
loss.backward()
|
||||
grad_stats = {}
|
||||
for key, param in policy.named_parameters():
|
||||
if param.requires_grad:
|
||||
grad_stats[f"{key}_mean"] = param.grad.mean()
|
||||
grad_stats[f"{key}_std"] = (
|
||||
param.grad.std() if param.grad.numel() > 1 else torch.tensor(float(0.0))
|
||||
)
|
||||
|
||||
optimizer.step()
|
||||
param_stats = {}
|
||||
for key, param in policy.named_parameters():
|
||||
param_stats[f"{key}_mean"] = param.mean()
|
||||
param_stats[f"{key}_std"] = param.std() if param.numel() > 1 else torch.tensor(float(0.0))
|
||||
|
||||
optimizer.zero_grad()
|
||||
policy.reset()
|
||||
|
||||
# HACK: We reload a batch with no delta_timestamps as `select_action` won't expect a timestamps dimension
|
||||
dataset.delta_timestamps = None
|
||||
batch = next(iter(dataloader))
|
||||
obs = {
|
||||
k: batch[k]
|
||||
for k in batch
|
||||
if k in ["observation.image", "observation.images.top", "observation.state"]
|
||||
}
|
||||
|
||||
actions_queue = (
|
||||
cfg.policy.n_action_steps if "n_action_steps" in cfg.policy else cfg.policy.n_action_repeats
|
||||
)
|
||||
actions = {str(i): policy.select_action(obs).contiguous() for i in range(actions_queue)}
|
||||
return output_dict, grad_stats, param_stats, actions
|
||||
|
||||
|
||||
def save_policy_to_safetensors(output_dir, env_name, policy_name, extra_overrides):
|
||||
env_policy_dir = Path(output_dir) / f"{env_name}_{policy_name}"
|
||||
|
||||
if env_policy_dir.exists():
|
||||
shutil.rmtree(env_policy_dir)
|
||||
|
||||
env_policy_dir.mkdir(parents=True, exist_ok=True)
|
||||
output_dict, grad_stats, param_stats, actions = get_policy_stats(env_name, policy_name, extra_overrides)
|
||||
save_file(output_dict, env_policy_dir / "output_dict.safetensors")
|
||||
save_file(grad_stats, env_policy_dir / "grad_stats.safetensors")
|
||||
save_file(param_stats, env_policy_dir / "param_stats.safetensors")
|
||||
save_file(actions, env_policy_dir / "actions.safetensors")
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
env_policies = [
|
||||
# ("xarm", "tdmpc", ["policy.n_action_repeats=2"]),
|
||||
(
|
||||
"pusht",
|
||||
"diffusion",
|
||||
["policy.n_action_steps=8", "policy.num_inference_steps=10", "policy.down_dims=[128, 256, 512]"],
|
||||
),
|
||||
("aloha", "act", ["policy.n_action_steps=10"]),
|
||||
]
|
||||
for env, policy, extra_overrides in env_policies:
|
||||
save_policy_to_safetensors("tests/data/save_policy_to_safetensors", env, policy, extra_overrides)
|
||||
Reference in New Issue
Block a user