Merge remote-tracking branch 'origin/main' into user/aliberts/2025_02_25_refactor_robots

This commit is contained in:
Simon Alibert
2025-03-13 14:24:50 +01:00
88 changed files with 151 additions and 154 deletions

View File

@@ -0,0 +1,311 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from unittest.mock import patch
import numpy as np
import pytest
from lerobot.common.datasets.compute_stats import (
_assert_type_and_shape,
aggregate_feature_stats,
aggregate_stats,
compute_episode_stats,
estimate_num_samples,
get_feature_stats,
sample_images,
sample_indices,
)
def mock_load_image_as_numpy(path, dtype, channel_first):
return np.ones((3, 32, 32), dtype=dtype) if channel_first else np.ones((32, 32, 3), dtype=dtype)
@pytest.fixture
def sample_array():
return np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
def test_estimate_num_samples():
assert estimate_num_samples(1) == 1
assert estimate_num_samples(10) == 10
assert estimate_num_samples(100) == 100
assert estimate_num_samples(200) == 100
assert estimate_num_samples(1000) == 177
assert estimate_num_samples(2000) == 299
assert estimate_num_samples(5000) == 594
assert estimate_num_samples(10_000) == 1000
assert estimate_num_samples(20_000) == 1681
assert estimate_num_samples(50_000) == 3343
assert estimate_num_samples(500_000) == 10_000
def test_sample_indices():
indices = sample_indices(10)
assert len(indices) > 0
assert indices[0] == 0
assert indices[-1] == 9
assert len(indices) == estimate_num_samples(10)
@patch("lerobot.common.datasets.compute_stats.load_image_as_numpy", side_effect=mock_load_image_as_numpy)
def test_sample_images(mock_load):
image_paths = [f"image_{i}.jpg" for i in range(100)]
images = sample_images(image_paths)
assert isinstance(images, np.ndarray)
assert images.shape[1:] == (3, 32, 32)
assert images.dtype == np.uint8
assert len(images) == estimate_num_samples(100)
def test_get_feature_stats_images():
data = np.random.rand(100, 3, 32, 32)
stats = get_feature_stats(data, axis=(0, 2, 3), keepdims=True)
assert "min" in stats and "max" in stats and "mean" in stats and "std" in stats and "count" in stats
np.testing.assert_equal(stats["count"], np.array([100]))
assert stats["min"].shape == stats["max"].shape == stats["mean"].shape == stats["std"].shape
def test_get_feature_stats_axis_0_keepdims(sample_array):
expected = {
"min": np.array([[1, 2, 3]]),
"max": np.array([[7, 8, 9]]),
"mean": np.array([[4.0, 5.0, 6.0]]),
"std": np.array([[2.44948974, 2.44948974, 2.44948974]]),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=(0,), keepdims=True)
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_axis_1(sample_array):
expected = {
"min": np.array([1, 4, 7]),
"max": np.array([3, 6, 9]),
"mean": np.array([2.0, 5.0, 8.0]),
"std": np.array([0.81649658, 0.81649658, 0.81649658]),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=(1,), keepdims=False)
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_no_axis(sample_array):
expected = {
"min": np.array(1),
"max": np.array(9),
"mean": np.array(5.0),
"std": np.array(2.5819889),
"count": np.array([3]),
}
result = get_feature_stats(sample_array, axis=None, keepdims=False)
for key in expected:
np.testing.assert_allclose(result[key], expected[key])
def test_get_feature_stats_empty_array():
array = np.array([])
with pytest.raises(ValueError):
get_feature_stats(array, axis=(0,), keepdims=True)
def test_get_feature_stats_single_value():
array = np.array([[1337]])
result = get_feature_stats(array, axis=None, keepdims=True)
np.testing.assert_equal(result["min"], np.array(1337))
np.testing.assert_equal(result["max"], np.array(1337))
np.testing.assert_equal(result["mean"], np.array(1337.0))
np.testing.assert_equal(result["std"], np.array(0.0))
np.testing.assert_equal(result["count"], np.array([1]))
def test_compute_episode_stats():
episode_data = {
"observation.image": [f"image_{i}.jpg" for i in range(100)],
"observation.state": np.random.rand(100, 10),
}
features = {
"observation.image": {"dtype": "image"},
"observation.state": {"dtype": "numeric"},
}
with patch(
"lerobot.common.datasets.compute_stats.load_image_as_numpy", side_effect=mock_load_image_as_numpy
):
stats = compute_episode_stats(episode_data, features)
assert "observation.image" in stats and "observation.state" in stats
assert stats["observation.image"]["count"].item() == 100
assert stats["observation.state"]["count"].item() == 100
assert stats["observation.image"]["mean"].shape == (3, 1, 1)
def test_assert_type_and_shape_valid():
valid_stats = [
{
"feature1": {
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
}
}
]
_assert_type_and_shape(valid_stats)
def test_assert_type_and_shape_invalid_type():
invalid_stats = [
{
"feature1": {
"min": [1.0], # Not a numpy array
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
}
}
]
with pytest.raises(ValueError, match="Stats must be composed of numpy array"):
_assert_type_and_shape(invalid_stats)
def test_assert_type_and_shape_invalid_shape():
invalid_stats = [
{
"feature1": {
"count": np.array([1, 2]), # Wrong shape
}
}
]
with pytest.raises(ValueError, match=r"Shape of 'count' must be \(1\)"):
_assert_type_and_shape(invalid_stats)
def test_aggregate_feature_stats():
stats_ft_list = [
{
"min": np.array([1.0]),
"max": np.array([10.0]),
"mean": np.array([5.0]),
"std": np.array([2.0]),
"count": np.array([1]),
},
{
"min": np.array([2.0]),
"max": np.array([12.0]),
"mean": np.array([6.0]),
"std": np.array([2.5]),
"count": np.array([1]),
},
]
result = aggregate_feature_stats(stats_ft_list)
np.testing.assert_allclose(result["min"], np.array([1.0]))
np.testing.assert_allclose(result["max"], np.array([12.0]))
np.testing.assert_allclose(result["mean"], np.array([5.5]))
np.testing.assert_allclose(result["std"], np.array([2.318405]), atol=1e-6)
np.testing.assert_allclose(result["count"], np.array([2]))
def test_aggregate_stats():
all_stats = [
{
"observation.image": {
"min": [1, 2, 3],
"max": [10, 20, 30],
"mean": [5.5, 10.5, 15.5],
"std": [2.87, 5.87, 8.87],
"count": 10,
},
"observation.state": {"min": 1, "max": 10, "mean": 5.5, "std": 2.87, "count": 10},
"extra_key_0": {"min": 5, "max": 25, "mean": 15, "std": 6, "count": 6},
},
{
"observation.image": {
"min": [2, 1, 0],
"max": [15, 10, 5],
"mean": [8.5, 5.5, 2.5],
"std": [3.42, 2.42, 1.42],
"count": 15,
},
"observation.state": {"min": 2, "max": 15, "mean": 8.5, "std": 3.42, "count": 15},
"extra_key_1": {"min": 0, "max": 20, "mean": 10, "std": 5, "count": 5},
},
]
expected_agg_stats = {
"observation.image": {
"min": [1, 1, 0],
"max": [15, 20, 30],
"mean": [7.3, 7.5, 7.7],
"std": [3.5317, 4.8267, 8.5581],
"count": 25,
},
"observation.state": {
"min": 1,
"max": 15,
"mean": 7.3,
"std": 3.5317,
"count": 25,
},
"extra_key_0": {
"min": 5,
"max": 25,
"mean": 15.0,
"std": 6.0,
"count": 6,
},
"extra_key_1": {
"min": 0,
"max": 20,
"mean": 10.0,
"std": 5.0,
"count": 5,
},
}
# cast to numpy
for ep_stats in all_stats:
for fkey, stats in ep_stats.items():
for k in stats:
stats[k] = np.array(stats[k], dtype=np.int64 if k == "count" else np.float32)
if fkey == "observation.image" and k != "count":
stats[k] = stats[k].reshape(3, 1, 1) # for normalization on image channels
else:
stats[k] = stats[k].reshape(1)
# cast to numpy
for fkey, stats in expected_agg_stats.items():
for k in stats:
stats[k] = np.array(stats[k], dtype=np.int64 if k == "count" else np.float32)
if fkey == "observation.image" and k != "count":
stats[k] = stats[k].reshape(3, 1, 1) # for normalization on image channels
else:
stats[k] = stats[k].reshape(1)
results = aggregate_stats(all_stats)
for fkey in expected_agg_stats:
np.testing.assert_allclose(results[fkey]["min"], expected_agg_stats[fkey]["min"])
np.testing.assert_allclose(results[fkey]["max"], expected_agg_stats[fkey]["max"])
np.testing.assert_allclose(results[fkey]["mean"], expected_agg_stats[fkey]["mean"])
np.testing.assert_allclose(
results[fkey]["std"], expected_agg_stats[fkey]["std"], atol=1e-04, rtol=1e-04
)
np.testing.assert_allclose(results[fkey]["count"], expected_agg_stats[fkey]["count"])

View File

@@ -0,0 +1,582 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import logging
import re
from copy import deepcopy
from itertools import chain
from pathlib import Path
import numpy as np
import pytest
import torch
from huggingface_hub import HfApi
from PIL import Image
from safetensors.torch import load_file
import lerobot
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.image_writer import image_array_to_pil_image
from lerobot.common.datasets.lerobot_dataset import (
LeRobotDataset,
MultiLeRobotDataset,
)
from lerobot.common.datasets.utils import (
create_branch,
flatten_dict,
unflatten_dict,
)
from lerobot.common.envs.factory import make_env_config
from lerobot.common.policies.factory import make_policy_config
from lerobot.common.robots.utils import make_robot
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from tests.fixtures.constants import DUMMY_CHW, DUMMY_HWC, DUMMY_REPO_ID
from tests.utils import require_x86_64_kernel
@pytest.fixture
def image_dataset(tmp_path, empty_lerobot_dataset_factory):
features = {
"image": {
"dtype": "image",
"shape": DUMMY_CHW,
"names": [
"channels",
"height",
"width",
],
}
}
return empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
def test_same_attributes_defined(tmp_path, lerobot_dataset_factory):
"""
Instantiate a LeRobotDataset both ways with '__init__()' and 'create()' and verify that instantiated
objects have the same sets of attributes defined.
"""
# Instantiate both ways
robot = make_robot("koch", mock=True)
root_create = tmp_path / "create"
dataset_create = LeRobotDataset.create(repo_id=DUMMY_REPO_ID, fps=30, robot=robot, root=root_create)
root_init = tmp_path / "init"
dataset_init = lerobot_dataset_factory(root=root_init)
init_attr = set(vars(dataset_init).keys())
create_attr = set(vars(dataset_create).keys())
assert init_attr == create_attr
def test_dataset_initialization(tmp_path, lerobot_dataset_factory):
kwargs = {
"repo_id": DUMMY_REPO_ID,
"total_episodes": 10,
"total_frames": 400,
"episodes": [2, 5, 6],
}
dataset = lerobot_dataset_factory(root=tmp_path / "test", **kwargs)
assert dataset.repo_id == kwargs["repo_id"]
assert dataset.meta.total_episodes == kwargs["total_episodes"]
assert dataset.meta.total_frames == kwargs["total_frames"]
assert dataset.episodes == kwargs["episodes"]
assert dataset.num_episodes == len(kwargs["episodes"])
assert dataset.num_frames == len(dataset)
def test_add_frame_missing_task(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'task'}\n"
):
dataset.add_frame({"state": torch.randn(1)})
def test_add_frame_missing_feature(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nMissing features: {'state'}\n"
):
dataset.add_frame({"task": "Dummy task"})
def test_add_frame_extra_feature(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="Feature mismatch in `frame` dictionary:\nExtra features: {'extra'}\n"
):
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task", "extra": "dummy_extra"})
def test_add_frame_wrong_type(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError, match="The feature 'state' of dtype 'float16' is not of the expected dtype 'float32'.\n"
):
dataset.add_frame({"state": torch.randn(1, dtype=torch.float16), "task": "Dummy task"})
def test_add_frame_wrong_shape(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape("The feature 'state' of shape '(1,)' does not have the expected shape '(2,)'.\n"),
):
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"})
def test_add_frame_wrong_shape_python_float(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '<class 'float'>' provided instead.\n"
),
):
dataset.add_frame({"state": 1.0, "task": "Dummy task"})
def test_add_frame_wrong_shape_torch_ndim_0(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape("The feature 'state' of shape '()' does not have the expected shape '(1,)'.\n"),
):
dataset.add_frame({"state": torch.tensor(1.0), "task": "Dummy task"})
def test_add_frame_wrong_shape_numpy_ndim_0(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'state' is not a 'np.ndarray'. Expected type is 'float32', but type '<class 'numpy.float32'>' provided instead.\n"
),
):
dataset.add_frame({"state": np.float32(1.0), "task": "Dummy task"})
def test_add_frame(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(1), "task": "Dummy task"})
dataset.save_episode()
assert len(dataset) == 1
assert dataset[0]["task"] == "Dummy task"
assert dataset[0]["task_index"] == 0
assert dataset[0]["state"].ndim == 0
def test_add_frame_state_1d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2])
def test_add_frame_state_2d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4])
def test_add_frame_state_3d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3])
def test_add_frame_state_4d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5])
def test_add_frame_state_5d(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (2, 4, 3, 5, 1), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": torch.randn(2, 4, 3, 5, 1), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].shape == torch.Size([2, 4, 3, 5, 1])
def test_add_frame_state_numpy(tmp_path, empty_lerobot_dataset_factory):
features = {"state": {"dtype": "float32", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"state": np.array([1], dtype=np.float32), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["state"].ndim == 0
def test_add_frame_string(tmp_path, empty_lerobot_dataset_factory):
features = {"caption": {"dtype": "string", "shape": (1,), "names": None}}
dataset = empty_lerobot_dataset_factory(root=tmp_path / "test", features=features)
dataset.add_frame({"caption": "Dummy caption", "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["caption"] == "Dummy caption"
def test_add_frame_image_wrong_shape(image_dataset):
dataset = image_dataset
with pytest.raises(
ValueError,
match=re.escape(
"The feature 'image' of shape '(3, 128, 96)' does not have the expected shape '(3, 96, 128)' or '(96, 128, 3)'.\n"
),
):
c, h, w = DUMMY_CHW
dataset.add_frame({"image": torch.randn(c, w, h), "task": "Dummy task"})
def test_add_frame_image_wrong_range(image_dataset):
"""This test will display the following error message from a thread:
```
Error writing image ...test_add_frame_image_wrong_ran0/test/images/image/episode_000000/frame_000000.png:
The image data type is float, which requires values in the range [0.0, 1.0]. However, the provided range is [0.009678772038470007, 254.9776492089887].
Please adjust the range or provide a uint8 image with values in the range [0, 255]
```
Hence the image won't be saved on disk and save_episode will raise `FileNotFoundError`.
"""
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW) * 255, "task": "Dummy task"})
with pytest.raises(FileNotFoundError):
dataset.save_episode()
def test_add_frame_image(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_CHW), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_h_w_c(image_dataset):
dataset = image_dataset
dataset.add_frame({"image": np.random.rand(*DUMMY_HWC), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_uint8(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": image, "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_add_frame_image_pil(image_dataset):
dataset = image_dataset
image = np.random.randint(0, 256, DUMMY_HWC, dtype=np.uint8)
dataset.add_frame({"image": Image.fromarray(image), "task": "Dummy task"})
dataset.save_episode()
assert dataset[0]["image"].shape == torch.Size(DUMMY_CHW)
def test_image_array_to_pil_image_wrong_range_float_0_255():
image = np.random.rand(*DUMMY_HWC) * 255
with pytest.raises(ValueError):
image_array_to_pil_image(image)
# TODO(aliberts):
# - [ ] test various attributes & state from init and create
# - [ ] test init with episodes and check num_frames
# - [ ] test add_episode
# - [ ] test push_to_hub
# - [ ] test smaller methods
@pytest.mark.parametrize(
"env_name, repo_id, policy_name",
# Single dataset
lerobot.env_dataset_policy_triplets,
# Multi-dataset
# TODO after fix multidataset
# + [("aloha", ["lerobot/aloha_sim_insertion_human", "lerobot/aloha_sim_transfer_cube_human"], "act")],
)
def test_factory(env_name, repo_id, policy_name):
"""
Tests that:
- we can create a dataset with the factory.
- for a commonly used set of data keys, the data dimensions are correct.
"""
cfg = TrainPipelineConfig(
# TODO(rcadene, aliberts): remove dataset download
dataset=DatasetConfig(repo_id=repo_id, episodes=[0]),
env=make_env_config(env_name),
policy=make_policy_config(policy_name),
)
dataset = make_dataset(cfg)
delta_timestamps = dataset.delta_timestamps
camera_keys = dataset.meta.camera_keys
item = dataset[0]
keys_ndim_required = [
("action", 1, True),
("episode_index", 0, True),
("frame_index", 0, True),
("timestamp", 0, True),
# TODO(rcadene): should we rename it agent_pos?
("observation.state", 1, True),
("next.reward", 0, False),
("next.done", 0, False),
]
# test number of dimensions
for key, ndim, required in keys_ndim_required:
if key not in item:
if required:
assert key in item, f"{key}"
else:
logging.warning(f'Missing key in dataset: "{key}" not in {dataset}.')
continue
if delta_timestamps is not None and key in delta_timestamps:
assert item[key].ndim == ndim + 1, f"{key}"
assert item[key].shape[0] == len(delta_timestamps[key]), f"{key}"
else:
assert item[key].ndim == ndim, f"{key}"
if key in camera_keys:
assert item[key].dtype == torch.float32, f"{key}"
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert item[key].max() <= 1.0, f"{key}"
assert item[key].min() >= 0.0, f"{key}"
if delta_timestamps is not None and key in delta_timestamps:
# test t,c,h,w
assert item[key].shape[1] == 3, f"{key}"
else:
# test c,h,w
assert item[key].shape[0] == 3, f"{key}"
if delta_timestamps is not None:
# test missing keys in delta_timestamps
for key in delta_timestamps:
assert key in item, f"{key}"
# TODO(alexander-soare): If you're hunting for savings on testing time, this takes about 5 seconds.
@pytest.mark.skip("TODO after fix multidataset")
def test_multidataset_frames():
"""Check that all dataset frames are incorporated."""
# Note: use the image variants of the dataset to make the test approx 3x faster.
# Note: We really do need three repo_ids here as at some point this caught an issue with the chaining
# logic that wouldn't be caught with two repo IDs.
repo_ids = [
"lerobot/aloha_sim_insertion_human_image",
"lerobot/aloha_sim_transfer_cube_human_image",
"lerobot/aloha_sim_insertion_scripted_image",
]
sub_datasets = [LeRobotDataset(repo_id) for repo_id in repo_ids]
dataset = MultiLeRobotDataset(repo_ids)
assert len(dataset) == sum(len(d) for d in sub_datasets)
assert dataset.num_frames == sum(d.num_frames for d in sub_datasets)
assert dataset.num_episodes == sum(d.num_episodes for d in sub_datasets)
# Run through all items of the LeRobotDatasets in parallel with the items of the MultiLerobotDataset and
# check they match.
expected_dataset_indices = []
for i, sub_dataset in enumerate(sub_datasets):
expected_dataset_indices.extend([i] * len(sub_dataset))
for expected_dataset_index, sub_dataset_item, dataset_item in zip(
expected_dataset_indices, chain(*sub_datasets), dataset, strict=True
):
dataset_index = dataset_item.pop("dataset_index")
assert dataset_index == expected_dataset_index
assert sub_dataset_item.keys() == dataset_item.keys()
for k in sub_dataset_item:
assert torch.equal(sub_dataset_item[k], dataset_item[k])
# TODO(aliberts): Move to more appropriate location
def test_flatten_unflatten_dict():
d = {
"obs": {
"min": 0,
"max": 1,
"mean": 2,
"std": 3,
},
"action": {
"min": 4,
"max": 5,
"mean": 6,
"std": 7,
},
}
original_d = deepcopy(d)
d = unflatten_dict(flatten_dict(d))
# test equality between nested dicts
assert json.dumps(original_d, sort_keys=True) == json.dumps(d, sort_keys=True), f"{original_d} != {d}"
@pytest.mark.parametrize(
"repo_id",
[
"lerobot/pusht",
"lerobot/aloha_sim_insertion_human",
"lerobot/xarm_lift_medium",
# (michel-aractingi) commenting the two datasets from openx as test is failing
# "lerobot/nyu_franka_play_dataset",
# "lerobot/cmu_stretch",
],
)
@require_x86_64_kernel
def test_backward_compatibility(repo_id):
"""The artifacts for this test have been generated by `tests/artifacts/datasets/save_dataset_to_safetensors.py`."""
# TODO(rcadene, aliberts): remove dataset download
dataset = LeRobotDataset(repo_id, episodes=[0])
test_dir = Path("tests/artifacts/datasets") / repo_id
def load_and_compare(i):
new_frame = dataset[i] # noqa: B023
old_frame = load_file(test_dir / f"frame_{i}.safetensors") # noqa: B023
# ignore language instructions (if exists) in language conditioned datasets
# TODO (michel-aractingi): transform language obs to language embeddings via tokenizer
new_frame.pop("language_instruction", None)
old_frame.pop("language_instruction", None)
new_frame.pop("task", None)
old_frame.pop("task", None)
# Remove task_index to allow for backward compatibility
# TODO(rcadene): remove when new features have been generated
if "task_index" not in old_frame:
del new_frame["task_index"]
new_keys = set(new_frame.keys())
old_keys = set(old_frame.keys())
assert new_keys == old_keys, f"{new_keys=} and {old_keys=} are not the same"
for key in new_frame:
assert torch.isclose(new_frame[key], old_frame[key]).all(), (
f"{key=} for index={i} does not contain the same value"
)
# test2 first frames of first episode
i = dataset.episode_data_index["from"][0].item()
load_and_compare(i)
load_and_compare(i + 1)
# test 2 frames at the middle of first episode
i = int((dataset.episode_data_index["to"][0].item() - dataset.episode_data_index["from"][0].item()) / 2)
load_and_compare(i)
load_and_compare(i + 1)
# test 2 last frames of first episode
i = dataset.episode_data_index["to"][0].item()
load_and_compare(i - 2)
load_and_compare(i - 1)
# TODO(rcadene): Enable testing on second and last episode
# We currently cant because our test dataset only contains the first episode
# # test 2 first frames of second episode
# i = dataset.episode_data_index["from"][1].item()
# load_and_compare(i)
# load_and_compare(i + 1)
# # test 2 last frames of second episode
# i = dataset.episode_data_index["to"][1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)
# # test 2 last frames of last episode
# i = dataset.episode_data_index["to"][-1].item()
# load_and_compare(i - 2)
# load_and_compare(i - 1)
@pytest.mark.skip("Requires internet access")
def test_create_branch():
api = HfApi()
repo_id = "cadene/test_create_branch"
repo_type = "dataset"
branch = "test"
ref = f"refs/heads/{branch}"
# Prepare a repo with a test branch
api.delete_repo(repo_id, repo_type=repo_type, missing_ok=True)
api.create_repo(repo_id, repo_type=repo_type)
create_branch(repo_id, repo_type=repo_type, branch=branch)
# Make sure the test branch exists
branches = api.list_repo_refs(repo_id, repo_type=repo_type).branches
refs = [branch.ref for branch in branches]
assert ref in refs
# Overwrite it
create_branch(repo_id, repo_type=repo_type, branch=branch)
# Clean
api.delete_repo(repo_id, repo_type=repo_type)
def test_dataset_feature_with_forward_slash_raises_error():
# make sure dir does not exist
from lerobot.common.constants import HF_LEROBOT_HOME
dataset_dir = HF_LEROBOT_HOME / "lerobot/test/with/slash"
# make sure does not exist
if dataset_dir.exists():
dataset_dir.rmdir()
with pytest.raises(ValueError):
LeRobotDataset.create(
repo_id="lerobot/test/with/slash",
fps=30,
features={"a/b": {"dtype": "float32", "shape": 2, "names": None}},
)

View File

@@ -0,0 +1,278 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from itertools import accumulate
import datasets
import numpy as np
import pyarrow.compute as pc
import pytest
import torch
from lerobot.common.datasets.utils import (
check_delta_timestamps,
check_timestamps_sync,
get_delta_indices,
)
from tests.fixtures.constants import DUMMY_MOTOR_FEATURES
def calculate_total_episode(
hf_dataset: datasets.Dataset, raise_if_not_contiguous: bool = True
) -> dict[str, torch.Tensor]:
episode_indices = sorted(hf_dataset.unique("episode_index"))
total_episodes = len(episode_indices)
if raise_if_not_contiguous and episode_indices != list(range(total_episodes)):
raise ValueError("episode_index values are not sorted and contiguous.")
return total_episodes
def calculate_episode_data_index(hf_dataset: datasets.Dataset) -> dict[str, np.ndarray]:
episode_lengths = []
table = hf_dataset.data.table
total_episodes = calculate_total_episode(hf_dataset)
for ep_idx in range(total_episodes):
ep_table = table.filter(pc.equal(table["episode_index"], ep_idx))
episode_lengths.insert(ep_idx, len(ep_table))
cumulative_lengths = list(accumulate(episode_lengths))
return {
"from": np.array([0] + cumulative_lengths[:-1], dtype=np.int64),
"to": np.array(cumulative_lengths, dtype=np.int64),
}
@pytest.fixture(scope="module")
def synced_timestamps_factory(hf_dataset_factory):
def _create_synced_timestamps(fps: int = 30) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
hf_dataset = hf_dataset_factory(fps=fps)
timestamps = torch.stack(hf_dataset["timestamp"]).numpy()
episode_indices = torch.stack(hf_dataset["episode_index"]).numpy()
episode_data_index = calculate_episode_data_index(hf_dataset)
return timestamps, episode_indices, episode_data_index
return _create_synced_timestamps
@pytest.fixture(scope="module")
def unsynced_timestamps_factory(synced_timestamps_factory):
def _create_unsynced_timestamps(
fps: int = 30, tolerance_s: float = 1e-4
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
timestamps, episode_indices, episode_data_index = synced_timestamps_factory(fps=fps)
timestamps[30] += tolerance_s * 1.1 # Modify a single timestamp just outside tolerance
return timestamps, episode_indices, episode_data_index
return _create_unsynced_timestamps
@pytest.fixture(scope="module")
def slightly_off_timestamps_factory(synced_timestamps_factory):
def _create_slightly_off_timestamps(
fps: int = 30, tolerance_s: float = 1e-4
) -> tuple[np.ndarray, np.ndarray, np.ndarray]:
timestamps, episode_indices, episode_data_index = synced_timestamps_factory(fps=fps)
timestamps[30] += tolerance_s * 0.9 # Modify a single timestamp just inside tolerance
return timestamps, episode_indices, episode_data_index
return _create_slightly_off_timestamps
@pytest.fixture(scope="module")
def valid_delta_timestamps_factory():
def _create_valid_delta_timestamps(
fps: int = 30, keys: list = DUMMY_MOTOR_FEATURES, min_max_range: tuple[int, int] = (-10, 10)
) -> dict:
delta_timestamps = {key: [i * (1 / fps) for i in range(*min_max_range)] for key in keys}
return delta_timestamps
return _create_valid_delta_timestamps
@pytest.fixture(scope="module")
def invalid_delta_timestamps_factory(valid_delta_timestamps_factory):
def _create_invalid_delta_timestamps(
fps: int = 30, tolerance_s: float = 1e-4, keys: list = DUMMY_MOTOR_FEATURES
) -> dict:
delta_timestamps = valid_delta_timestamps_factory(fps, keys)
# Modify a single timestamp just outside tolerance
for key in keys:
delta_timestamps[key][3] += tolerance_s * 1.1
return delta_timestamps
return _create_invalid_delta_timestamps
@pytest.fixture(scope="module")
def slightly_off_delta_timestamps_factory(valid_delta_timestamps_factory):
def _create_slightly_off_delta_timestamps(
fps: int = 30, tolerance_s: float = 1e-4, keys: list = DUMMY_MOTOR_FEATURES
) -> dict:
delta_timestamps = valid_delta_timestamps_factory(fps, keys)
# Modify a single timestamp just inside tolerance
for key in delta_timestamps:
delta_timestamps[key][3] += tolerance_s * 0.9
delta_timestamps[key][-3] += tolerance_s * 0.9
return delta_timestamps
return _create_slightly_off_delta_timestamps
@pytest.fixture(scope="module")
def delta_indices_factory():
def _delta_indices(keys: list = DUMMY_MOTOR_FEATURES, min_max_range: tuple[int, int] = (-10, 10)) -> dict:
return {key: list(range(*min_max_range)) for key in keys}
return _delta_indices
def test_check_timestamps_sync_synced(synced_timestamps_factory):
fps = 30
tolerance_s = 1e-4
timestamps, ep_idx, ep_data_index = synced_timestamps_factory(fps)
result = check_timestamps_sync(
timestamps=timestamps,
episode_indices=ep_idx,
episode_data_index=ep_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_timestamps_sync_unsynced(unsynced_timestamps_factory):
fps = 30
tolerance_s = 1e-4
timestamps, ep_idx, ep_data_index = unsynced_timestamps_factory(fps, tolerance_s)
with pytest.raises(ValueError):
check_timestamps_sync(
timestamps=timestamps,
episode_indices=ep_idx,
episode_data_index=ep_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
def test_check_timestamps_sync_unsynced_no_exception(unsynced_timestamps_factory):
fps = 30
tolerance_s = 1e-4
timestamps, ep_idx, ep_data_index = unsynced_timestamps_factory(fps, tolerance_s)
result = check_timestamps_sync(
timestamps=timestamps,
episode_indices=ep_idx,
episode_data_index=ep_data_index,
fps=fps,
tolerance_s=tolerance_s,
raise_value_error=False,
)
assert result is False
def test_check_timestamps_sync_slightly_off(slightly_off_timestamps_factory):
fps = 30
tolerance_s = 1e-4
timestamps, ep_idx, ep_data_index = slightly_off_timestamps_factory(fps, tolerance_s)
result = check_timestamps_sync(
timestamps=timestamps,
episode_indices=ep_idx,
episode_data_index=ep_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_timestamps_sync_single_timestamp():
fps = 30
tolerance_s = 1e-4
timestamps, ep_idx = np.array([0.0]), np.array([0])
episode_data_index = {"to": np.array([1]), "from": np.array([0])}
result = check_timestamps_sync(
timestamps=timestamps,
episode_indices=ep_idx,
episode_data_index=episode_data_index,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_delta_timestamps_valid(valid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
valid_delta_timestamps = valid_delta_timestamps_factory(fps)
result = check_delta_timestamps(
delta_timestamps=valid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_delta_timestamps_slightly_off(slightly_off_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
slightly_off_delta_timestamps = slightly_off_delta_timestamps_factory(fps, tolerance_s)
result = check_delta_timestamps(
delta_timestamps=slightly_off_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_check_delta_timestamps_invalid(invalid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s)
with pytest.raises(ValueError):
check_delta_timestamps(
delta_timestamps=invalid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
def test_check_delta_timestamps_invalid_no_exception(invalid_delta_timestamps_factory):
fps = 30
tolerance_s = 1e-4
invalid_delta_timestamps = invalid_delta_timestamps_factory(fps, tolerance_s)
result = check_delta_timestamps(
delta_timestamps=invalid_delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
raise_value_error=False,
)
assert result is False
def test_check_delta_timestamps_empty():
delta_timestamps = {}
fps = 30
tolerance_s = 1e-4
result = check_delta_timestamps(
delta_timestamps=delta_timestamps,
fps=fps,
tolerance_s=tolerance_s,
)
assert result is True
def test_delta_indices(valid_delta_timestamps_factory, delta_indices_factory):
fps = 50
min_max_range = (-100, 100)
delta_timestamps = valid_delta_timestamps_factory(fps, min_max_range=min_max_range)
expected_delta_indices = delta_indices_factory(min_max_range=min_max_range)
actual_delta_indices = get_delta_indices(delta_timestamps, fps)
assert expected_delta_indices == actual_delta_indices

View File

@@ -0,0 +1,374 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
import torch
from safetensors.torch import load_file
from torchvision.transforms import v2
from torchvision.transforms.v2 import functional as F # noqa: N812
from lerobot.common.datasets.transforms import (
ImageTransformConfig,
ImageTransforms,
ImageTransformsConfig,
RandomSubsetApply,
SharpnessJitter,
make_transform_from_config,
)
from lerobot.common.utils.random_utils import seeded_context
from lerobot.scripts.visualize_image_transforms import (
save_all_transforms,
save_each_transform,
)
from tests.artifacts.image_transforms.save_image_transforms_to_safetensors import ARTIFACT_DIR
from tests.utils import require_x86_64_kernel
@pytest.fixture
def color_jitters():
return [
v2.ColorJitter(brightness=0.5),
v2.ColorJitter(contrast=0.5),
v2.ColorJitter(saturation=0.5),
]
@pytest.fixture
def single_transforms():
return load_file(ARTIFACT_DIR / "single_transforms.safetensors")
@pytest.fixture
def img_tensor(single_transforms):
return single_transforms["original_frame"]
@pytest.fixture
def default_transforms():
return load_file(ARTIFACT_DIR / "default_transforms.safetensors")
def test_get_image_transforms_no_transform_enable_false(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig() # default is enable=False
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
def test_get_image_transforms_no_transform_max_num_transforms_0(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True, max_num_transforms=0)
tf_actual = ImageTransforms(tf_cfg)
torch.testing.assert_close(tf_actual(img_tensor), img_tensor)
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_brightness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"brightness": ImageTransformConfig(type="ColorJitter", kwargs={"brightness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(brightness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_contrast(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"contrast": ImageTransformConfig(type="ColorJitter", kwargs={"contrast": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(contrast=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_saturation(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"saturation": ImageTransformConfig(type="ColorJitter", kwargs={"saturation": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(saturation=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(-0.25, -0.25), (0.25, 0.25)])
def test_get_image_transforms_hue(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True, tfs={"hue": ImageTransformConfig(type="ColorJitter", kwargs={"hue": min_max})}
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.ColorJitter(hue=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@pytest.mark.parametrize("min_max", [(0.5, 0.5), (2.0, 2.0)])
def test_get_image_transforms_sharpness(img_tensor_factory, min_max):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
tfs={"sharpness": ImageTransformConfig(type="SharpnessJitter", kwargs={"sharpness": min_max})},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = SharpnessJitter(sharpness=min_max)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
def test_get_image_transforms_max_num_transforms(img_tensor_factory):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
max_num_transforms=5,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
tf_actual = ImageTransforms(tf_cfg)
tf_expected = v2.Compose(
[
v2.ColorJitter(brightness=(0.5, 0.5)),
v2.ColorJitter(contrast=(0.5, 0.5)),
v2.ColorJitter(saturation=(0.5, 0.5)),
v2.ColorJitter(hue=(0.5, 0.5)),
SharpnessJitter(sharpness=(0.5, 0.5)),
]
)
torch.testing.assert_close(tf_actual(img_tensor), tf_expected(img_tensor))
@require_x86_64_kernel
def test_get_image_transforms_random_order(img_tensor_factory):
out_imgs = []
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(
enable=True,
random_order=True,
tfs={
"brightness": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"brightness": (0.5, 0.5)},
),
"contrast": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"contrast": (0.5, 0.5)},
),
"saturation": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"saturation": (0.5, 0.5)},
),
"hue": ImageTransformConfig(
weight=1.0,
type="ColorJitter",
kwargs={"hue": (0.5, 0.5)},
),
"sharpness": ImageTransformConfig(
weight=1.0,
type="SharpnessJitter",
kwargs={"sharpness": (0.5, 0.5)},
),
},
)
tf = ImageTransforms(tf_cfg)
with seeded_context(1338):
for _ in range(10):
out_imgs.append(tf(img_tensor))
tmp_img_tensor = img_tensor
for sub_tf in tf.tf.selected_transforms:
tmp_img_tensor = sub_tf(tmp_img_tensor)
torch.testing.assert_close(tmp_img_tensor, out_imgs[-1])
for i in range(1, len(out_imgs)):
with pytest.raises(AssertionError):
torch.testing.assert_close(out_imgs[0], out_imgs[i])
@pytest.mark.parametrize(
"tf_type, tf_name, min_max_values",
[
("ColorJitter", "brightness", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "contrast", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "saturation", [(0.5, 0.5), (2.0, 2.0)]),
("ColorJitter", "hue", [(-0.25, -0.25), (0.25, 0.25)]),
("SharpnessJitter", "sharpness", [(0.5, 0.5), (2.0, 2.0)]),
],
)
def test_backward_compatibility_single_transforms(
img_tensor, tf_type, tf_name, min_max_values, single_transforms
):
for min_max in min_max_values:
tf_cfg = ImageTransformConfig(type=tf_type, kwargs={tf_name: min_max})
tf = make_transform_from_config(tf_cfg)
actual = tf(img_tensor)
key = f"{tf_name}_{min_max[0]}_{min_max[1]}"
expected = single_transforms[key]
torch.testing.assert_close(actual, expected)
@require_x86_64_kernel
def test_backward_compatibility_default_config(img_tensor, default_transforms):
cfg = ImageTransformsConfig(enable=True)
default_tf = ImageTransforms(cfg)
with seeded_context(1337):
actual = default_tf(img_tensor)
expected = default_transforms["default"]
torch.testing.assert_close(actual, expected)
@pytest.mark.parametrize("p", [[0, 1], [1, 0]])
def test_random_subset_apply_single_choice(img_tensor_factory, p):
img_tensor = img_tensor_factory()
flips = [v2.RandomHorizontalFlip(p=1), v2.RandomVerticalFlip(p=1)]
random_choice = RandomSubsetApply(flips, p=p, n_subset=1, random_order=False)
actual = random_choice(img_tensor)
p_horz, _ = p
if p_horz:
torch.testing.assert_close(actual, F.horizontal_flip(img_tensor))
else:
torch.testing.assert_close(actual, F.vertical_flip(img_tensor))
def test_random_subset_apply_random_order(img_tensor_factory):
img_tensor = img_tensor_factory()
flips = [v2.RandomHorizontalFlip(p=1), v2.RandomVerticalFlip(p=1)]
random_order = RandomSubsetApply(flips, p=[0.5, 0.5], n_subset=2, random_order=True)
# We can't really check whether the transforms are actually applied in random order. However,
# horizontal and vertical flip are commutative. Meaning, even under the assumption that the transform
# applies them in random order, we can use a fixed order to compute the expected value.
actual = random_order(img_tensor)
expected = v2.Compose(flips)(img_tensor)
torch.testing.assert_close(actual, expected)
def test_random_subset_apply_valid_transforms(img_tensor_factory, color_jitters):
img_tensor = img_tensor_factory()
transform = RandomSubsetApply(color_jitters)
output = transform(img_tensor)
assert output.shape == img_tensor.shape
def test_random_subset_apply_probability_length_mismatch(color_jitters):
with pytest.raises(ValueError):
RandomSubsetApply(color_jitters, p=[0.5, 0.5])
@pytest.mark.parametrize("n_subset", [0, 5])
def test_random_subset_apply_invalid_n_subset(color_jitters, n_subset):
with pytest.raises(ValueError):
RandomSubsetApply(color_jitters, n_subset=n_subset)
def test_sharpness_jitter_valid_range_tuple(img_tensor_factory):
img_tensor = img_tensor_factory()
tf = SharpnessJitter((0.1, 2.0))
output = tf(img_tensor)
assert output.shape == img_tensor.shape
def test_sharpness_jitter_valid_range_float(img_tensor_factory):
img_tensor = img_tensor_factory()
tf = SharpnessJitter(0.5)
output = tf(img_tensor)
assert output.shape == img_tensor.shape
def test_sharpness_jitter_invalid_range_min_negative():
with pytest.raises(ValueError):
SharpnessJitter((-0.1, 2.0))
def test_sharpness_jitter_invalid_range_max_smaller():
with pytest.raises(ValueError):
SharpnessJitter((2.0, 0.1))
def test_save_all_transforms(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
save_all_transforms(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the combined transforms directory exists and contains the right files
combined_transforms_dir = tmp_path / "all"
assert combined_transforms_dir.exists(), "Combined transforms directory was not created."
assert any(combined_transforms_dir.iterdir()), (
"No transformed images found in combined transforms directory."
)
for i in range(1, n_examples + 1):
assert (combined_transforms_dir / f"{i}.png").exists(), (
f"Combined transform image {i}.png was not found."
)
def test_save_each_transform(img_tensor_factory, tmp_path):
img_tensor = img_tensor_factory()
tf_cfg = ImageTransformsConfig(enable=True)
n_examples = 3
save_each_transform(tf_cfg, img_tensor, tmp_path, n_examples)
# Check if the transformed images exist for each transform type
transforms = ["brightness", "contrast", "saturation", "hue", "sharpness"]
for transform in transforms:
transform_dir = tmp_path / transform
assert transform_dir.exists(), f"{transform} directory was not created."
assert any(transform_dir.iterdir()), f"No transformed images found in {transform} directory."
# Check for specific files within each transform directory
expected_files = [f"{i}.png" for i in range(1, n_examples + 1)] + ["min.png", "max.png", "mean.png"]
for file_name in expected_files:
assert (transform_dir / file_name).exists(), (
f"{file_name} was not found in {transform} directory."
)

View File

@@ -0,0 +1,386 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import queue
import time
from multiprocessing import queues
from unittest.mock import MagicMock, patch
import numpy as np
import pytest
from PIL import Image
from lerobot.common.datasets.image_writer import (
AsyncImageWriter,
image_array_to_pil_image,
safe_stop_image_writer,
write_image,
)
from tests.fixtures.constants import DUMMY_HWC
DUMMY_IMAGE = "test_image.png"
def test_init_threading():
writer = AsyncImageWriter(num_processes=0, num_threads=2)
try:
assert writer.num_processes == 0
assert writer.num_threads == 2
assert isinstance(writer.queue, queue.Queue)
assert len(writer.threads) == 2
assert len(writer.processes) == 0
assert all(t.is_alive() for t in writer.threads)
finally:
writer.stop()
def test_init_multiprocessing():
writer = AsyncImageWriter(num_processes=2, num_threads=2)
try:
assert writer.num_processes == 2
assert writer.num_threads == 2
assert isinstance(writer.queue, queues.JoinableQueue)
assert len(writer.threads) == 0
assert len(writer.processes) == 2
assert all(p.is_alive() for p in writer.processes)
finally:
writer.stop()
def test_zero_threads():
with pytest.raises(ValueError):
AsyncImageWriter(num_processes=0, num_threads=0)
def test_image_array_to_pil_image_float_array_wrong_range_0_255():
image = np.random.rand(*DUMMY_HWC) * 255
with pytest.raises(ValueError):
image_array_to_pil_image(image)
def test_image_array_to_pil_image_float_array_wrong_range_neg_1_1():
image = np.random.rand(*DUMMY_HWC) * 2 - 1
with pytest.raises(ValueError):
image_array_to_pil_image(image)
def test_image_array_to_pil_image_rgb(img_array_factory):
img_array = img_array_factory(100, 100)
result_image = image_array_to_pil_image(img_array)
assert isinstance(result_image, Image.Image)
assert result_image.size == (100, 100)
assert result_image.mode == "RGB"
def test_image_array_to_pil_image_pytorch_format(img_array_factory):
img_array = img_array_factory(100, 100).transpose(2, 0, 1)
result_image = image_array_to_pil_image(img_array)
assert isinstance(result_image, Image.Image)
assert result_image.size == (100, 100)
assert result_image.mode == "RGB"
def test_image_array_to_pil_image_single_channel(img_array_factory):
img_array = img_array_factory(channels=1)
with pytest.raises(NotImplementedError):
image_array_to_pil_image(img_array)
def test_image_array_to_pil_image_4_channels(img_array_factory):
img_array = img_array_factory(channels=4)
with pytest.raises(NotImplementedError):
image_array_to_pil_image(img_array)
def test_image_array_to_pil_image_float_array(img_array_factory):
img_array = img_array_factory(dtype=np.float32)
result_image = image_array_to_pil_image(img_array)
assert isinstance(result_image, Image.Image)
assert result_image.size == (100, 100)
assert result_image.mode == "RGB"
assert np.array(result_image).dtype == np.uint8
def test_image_array_to_pil_image_uint8_array(img_array_factory):
img_array = img_array_factory(dtype=np.float32)
result_image = image_array_to_pil_image(img_array)
assert isinstance(result_image, Image.Image)
assert result_image.size == (100, 100)
assert result_image.mode == "RGB"
assert np.array(result_image).dtype == np.uint8
def test_write_image_numpy(tmp_path, img_array_factory):
image_array = img_array_factory()
fpath = tmp_path / DUMMY_IMAGE
write_image(image_array, fpath)
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
assert np.array_equal(image_array, saved_image)
def test_write_image_image(tmp_path, img_factory):
image_pil = img_factory()
fpath = tmp_path / DUMMY_IMAGE
write_image(image_pil, fpath)
assert fpath.exists()
saved_image = Image.open(fpath)
assert list(saved_image.getdata()) == list(image_pil.getdata())
assert np.array_equal(image_pil, saved_image)
def test_write_image_exception(tmp_path):
image_array = "invalid data"
fpath = tmp_path / DUMMY_IMAGE
with patch("builtins.print") as mock_print:
write_image(image_array, fpath)
mock_print.assert_called()
assert not fpath.exists()
def test_save_image_numpy(tmp_path, img_array_factory):
writer = AsyncImageWriter()
try:
image_array = img_array_factory()
fpath = tmp_path / DUMMY_IMAGE
fpath.parent.mkdir(parents=True, exist_ok=True)
writer.save_image(image_array, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
assert np.array_equal(image_array, saved_image)
finally:
writer.stop()
def test_save_image_numpy_multiprocessing(tmp_path, img_array_factory):
writer = AsyncImageWriter(num_processes=2, num_threads=2)
try:
image_array = img_array_factory()
fpath = tmp_path / DUMMY_IMAGE
writer.save_image(image_array, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
assert np.array_equal(image_array, saved_image)
finally:
writer.stop()
def test_save_image_torch(tmp_path, img_tensor_factory):
writer = AsyncImageWriter()
try:
image_tensor = img_tensor_factory()
fpath = tmp_path / DUMMY_IMAGE
fpath.parent.mkdir(parents=True, exist_ok=True)
writer.save_image(image_tensor, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
assert np.array_equal(expected_image, saved_image)
finally:
writer.stop()
def test_save_image_torch_multiprocessing(tmp_path, img_tensor_factory):
writer = AsyncImageWriter(num_processes=2, num_threads=2)
try:
image_tensor = img_tensor_factory()
fpath = tmp_path / DUMMY_IMAGE
writer.save_image(image_tensor, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
expected_image = (image_tensor.permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8)
assert np.array_equal(expected_image, saved_image)
finally:
writer.stop()
def test_save_image_pil(tmp_path, img_factory):
writer = AsyncImageWriter()
try:
image_pil = img_factory()
fpath = tmp_path / DUMMY_IMAGE
fpath.parent.mkdir(parents=True, exist_ok=True)
writer.save_image(image_pil, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = Image.open(fpath)
assert list(saved_image.getdata()) == list(image_pil.getdata())
finally:
writer.stop()
def test_save_image_pil_multiprocessing(tmp_path, img_factory):
writer = AsyncImageWriter(num_processes=2, num_threads=2)
try:
image_pil = img_factory()
fpath = tmp_path / DUMMY_IMAGE
writer.save_image(image_pil, fpath)
writer.wait_until_done()
assert fpath.exists()
saved_image = Image.open(fpath)
assert list(saved_image.getdata()) == list(image_pil.getdata())
finally:
writer.stop()
def test_save_image_invalid_data(tmp_path):
writer = AsyncImageWriter()
try:
image_array = "invalid data"
fpath = tmp_path / DUMMY_IMAGE
fpath.parent.mkdir(parents=True, exist_ok=True)
with patch("builtins.print") as mock_print:
writer.save_image(image_array, fpath)
writer.wait_until_done()
mock_print.assert_called()
assert not fpath.exists()
finally:
writer.stop()
def test_save_image_after_stop(tmp_path, img_array_factory):
writer = AsyncImageWriter()
writer.stop()
image_array = img_array_factory()
fpath = tmp_path / DUMMY_IMAGE
writer.save_image(image_array, fpath)
time.sleep(1)
assert not fpath.exists()
def test_stop():
writer = AsyncImageWriter(num_processes=0, num_threads=2)
writer.stop()
assert not any(t.is_alive() for t in writer.threads)
def test_stop_multiprocessing():
writer = AsyncImageWriter(num_processes=2, num_threads=2)
writer.stop()
assert not any(p.is_alive() for p in writer.processes)
def test_multiple_stops():
writer = AsyncImageWriter()
writer.stop()
writer.stop() # Should not raise an exception
assert not any(t.is_alive() for t in writer.threads)
def test_multiple_stops_multiprocessing():
writer = AsyncImageWriter(num_processes=2, num_threads=2)
writer.stop()
writer.stop() # Should not raise an exception
assert not any(t.is_alive() for t in writer.threads)
def test_wait_until_done(tmp_path, img_array_factory):
writer = AsyncImageWriter(num_processes=0, num_threads=4)
try:
num_images = 100
image_arrays = [img_array_factory(height=500, width=500) for _ in range(num_images)]
fpaths = [tmp_path / f"frame_{i:06d}.png" for i in range(num_images)]
for image_array, fpath in zip(image_arrays, fpaths, strict=True):
fpath.parent.mkdir(parents=True, exist_ok=True)
writer.save_image(image_array, fpath)
writer.wait_until_done()
for i, fpath in enumerate(fpaths):
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
assert np.array_equal(saved_image, image_arrays[i])
finally:
writer.stop()
def test_wait_until_done_multiprocessing(tmp_path, img_array_factory):
writer = AsyncImageWriter(num_processes=2, num_threads=2)
try:
num_images = 100
image_arrays = [img_array_factory() for _ in range(num_images)]
fpaths = [tmp_path / f"frame_{i:06d}.png" for i in range(num_images)]
for image_array, fpath in zip(image_arrays, fpaths, strict=True):
fpath.parent.mkdir(parents=True, exist_ok=True)
writer.save_image(image_array, fpath)
writer.wait_until_done()
for i, fpath in enumerate(fpaths):
assert fpath.exists()
saved_image = np.array(Image.open(fpath))
assert np.array_equal(saved_image, image_arrays[i])
finally:
writer.stop()
def test_exception_handling(tmp_path, img_array_factory):
writer = AsyncImageWriter()
try:
image_array = img_array_factory()
with (
patch.object(writer.queue, "put", side_effect=queue.Full("Queue is full")),
pytest.raises(queue.Full) as exc_info,
):
writer.save_image(image_array, tmp_path / "test.png")
assert str(exc_info.value) == "Queue is full"
finally:
writer.stop()
def test_with_different_image_formats(tmp_path, img_array_factory):
writer = AsyncImageWriter()
try:
image_array = img_array_factory()
formats = ["png", "jpeg", "bmp"]
for fmt in formats:
fpath = tmp_path / f"test_image.{fmt}"
write_image(image_array, fpath)
assert fpath.exists()
finally:
writer.stop()
def test_safe_stop_image_writer_decorator():
class MockDataset:
def __init__(self):
self.image_writer = MagicMock(spec=AsyncImageWriter)
@safe_stop_image_writer
def function_that_raises_exception(dataset=None):
raise Exception("Test exception")
dataset = MockDataset()
with pytest.raises(Exception) as exc_info:
function_that_raises_exception(dataset=dataset)
assert str(exc_info.value) == "Test exception"
dataset.image_writer.stop.assert_called_once()
def test_main_process_time(tmp_path, img_tensor_factory):
writer = AsyncImageWriter()
try:
image_tensor = img_tensor_factory()
fpath = tmp_path / DUMMY_IMAGE
start_time = time.perf_counter()
writer.save_image(image_tensor, fpath)
end_time = time.perf_counter()
time_spent = end_time - start_time
# Might need to adjust this threshold depending on hardware
assert time_spent < 0.01, f"Main process time exceeded threshold: {time_spent}s"
writer.wait_until_done()
assert fpath.exists()
finally:
writer.stop()

View File

@@ -0,0 +1,282 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.d
from copy import deepcopy
from uuid import uuid4
import numpy as np
import pytest
import torch
from lerobot.common.datasets.online_buffer import OnlineBuffer, compute_sampler_weights
# Some constants for OnlineBuffer tests.
data_key = "data"
data_shape = (2, 3) # just some arbitrary > 1D shape
buffer_capacity = 100
fps = 10
def make_new_buffer(
write_dir: str | None = None, delta_timestamps: dict[str, list[float]] | None = None
) -> tuple[OnlineBuffer, str]:
if write_dir is None:
write_dir = f"/tmp/online_buffer_{uuid4().hex}"
buffer = OnlineBuffer(
write_dir,
data_spec={data_key: {"shape": data_shape, "dtype": np.dtype("float32")}},
buffer_capacity=buffer_capacity,
fps=fps,
delta_timestamps=delta_timestamps,
)
return buffer, write_dir
def make_spoof_data_frames(n_episodes: int, n_frames_per_episode: int) -> dict[str, np.ndarray]:
new_data = {
data_key: np.arange(n_frames_per_episode * n_episodes * np.prod(data_shape)).reshape(-1, *data_shape),
OnlineBuffer.INDEX_KEY: np.arange(n_frames_per_episode * n_episodes),
OnlineBuffer.EPISODE_INDEX_KEY: np.repeat(np.arange(n_episodes), n_frames_per_episode),
OnlineBuffer.FRAME_INDEX_KEY: np.tile(np.arange(n_frames_per_episode), n_episodes),
OnlineBuffer.TIMESTAMP_KEY: np.tile(np.arange(n_frames_per_episode) / fps, n_episodes),
}
return new_data
def test_non_mutate():
"""Checks that the data provided to the add_data method is copied rather than passed by reference.
This means that mutating the data in the buffer does not mutate the original data.
NOTE: If this test fails, it means some of the other tests may be compromised. For example, we can't trust
a success case for `test_write_read`.
"""
buffer, _ = make_new_buffer()
new_data = make_spoof_data_frames(2, buffer_capacity // 4)
new_data_copy = deepcopy(new_data)
buffer.add_data(new_data)
buffer._data[data_key][:] += 1
assert all(np.array_equal(new_data[k], new_data_copy[k]) for k in new_data)
def test_index_error_no_data():
buffer, _ = make_new_buffer()
with pytest.raises(IndexError):
buffer[0]
def test_index_error_with_data():
buffer, _ = make_new_buffer()
n_frames = buffer_capacity // 2
new_data = make_spoof_data_frames(1, n_frames)
buffer.add_data(new_data)
with pytest.raises(IndexError):
buffer[n_frames]
with pytest.raises(IndexError):
buffer[-n_frames - 1]
@pytest.mark.parametrize("do_reload", [False, True])
def test_write_read(do_reload: bool):
"""Checks that data can be added to the buffer and read back.
If do_reload we delete the buffer object and load the buffer back from disk before reading.
"""
buffer, write_dir = make_new_buffer()
n_episodes = 2
n_frames_per_episode = buffer_capacity // 4
new_data = make_spoof_data_frames(n_episodes, n_frames_per_episode)
buffer.add_data(new_data)
if do_reload:
del buffer
buffer, _ = make_new_buffer(write_dir)
assert len(buffer) == n_frames_per_episode * n_episodes
for i, item in enumerate(buffer):
assert all(isinstance(item[k], torch.Tensor) for k in item)
assert np.array_equal(item[data_key].numpy(), new_data[data_key][i])
def test_read_data_key():
"""Tests that data can be added to a buffer and all data for a. specific key can be read back."""
buffer, _ = make_new_buffer()
n_episodes = 2
n_frames_per_episode = buffer_capacity // 4
new_data = make_spoof_data_frames(n_episodes, n_frames_per_episode)
buffer.add_data(new_data)
data_from_buffer = buffer.get_data_by_key(data_key)
assert isinstance(data_from_buffer, torch.Tensor)
assert np.array_equal(data_from_buffer.numpy(), new_data[data_key])
def test_fifo():
"""Checks that if data is added beyond the buffer capacity, we discard the oldest data first."""
buffer, _ = make_new_buffer()
n_frames_per_episode = buffer_capacity // 4
n_episodes = 3
new_data = make_spoof_data_frames(n_episodes, n_frames_per_episode)
buffer.add_data(new_data)
n_more_episodes = 2
# Developer sanity check (in case someone changes the global `buffer_capacity`).
assert (n_episodes + n_more_episodes) * n_frames_per_episode > buffer_capacity, (
"Something went wrong with the test code."
)
more_new_data = make_spoof_data_frames(n_more_episodes, n_frames_per_episode)
buffer.add_data(more_new_data)
assert len(buffer) == buffer_capacity, "The buffer should be full."
expected_data = {}
for k in new_data:
# Concatenate, left-truncate, then roll, to imitate the cyclical FIFO pattern in OnlineBuffer.
expected_data[k] = np.roll(
np.concatenate([new_data[k], more_new_data[k]])[-buffer_capacity:],
shift=len(new_data[k]) + len(more_new_data[k]) - buffer_capacity,
axis=0,
)
for i, item in enumerate(buffer):
assert all(isinstance(item[k], torch.Tensor) for k in item)
assert np.array_equal(item[data_key].numpy(), expected_data[data_key][i])
def test_delta_timestamps_within_tolerance():
"""Check that getting an item with delta_timestamps within tolerance succeeds.
Note: Copied from `test_datasets.py::test_load_previous_and_future_frames_within_tolerance`.
"""
# Sanity check on global fps as we are assuming it is 10 here.
assert fps == 10, "This test assumes fps==10"
buffer, _ = make_new_buffer(delta_timestamps={"index": [-0.2, 0, 0.139]})
new_data = make_spoof_data_frames(n_episodes=1, n_frames_per_episode=5)
buffer.add_data(new_data)
buffer.tolerance_s = 0.04
item = buffer[2]
data, is_pad = item["index"], item[f"index{OnlineBuffer.IS_PAD_POSTFIX}"]
torch.testing.assert_close(data, torch.tensor([0, 2, 3]), msg="Data does not match expected values")
assert not is_pad.any(), "Unexpected padding detected"
def test_delta_timestamps_outside_tolerance_inside_episode_range():
"""Check that getting an item with delta_timestamps outside of tolerance fails.
We expect it to fail if and only if the requested timestamps are within the episode range.
Note: Copied from
`test_datasets.py::test_load_previous_and_future_frames_outside_tolerance_inside_episode_range`
"""
# Sanity check on global fps as we are assuming it is 10 here.
assert fps == 10, "This test assumes fps==10"
buffer, _ = make_new_buffer(delta_timestamps={"index": [-0.2, 0, 0.141]})
new_data = make_spoof_data_frames(n_episodes=1, n_frames_per_episode=5)
buffer.add_data(new_data)
buffer.tolerance_s = 0.04
with pytest.raises(AssertionError):
buffer[2]
def test_delta_timestamps_outside_tolerance_outside_episode_range():
"""Check that copy-padding of timestamps outside of the episode range works.
Note: Copied from
`test_datasets.py::test_load_previous_and_future_frames_outside_tolerance_outside_episode_range`
"""
# Sanity check on global fps as we are assuming it is 10 here.
assert fps == 10, "This test assumes fps==10"
buffer, _ = make_new_buffer(delta_timestamps={"index": [-0.3, -0.24, 0, 0.26, 0.3]})
new_data = make_spoof_data_frames(n_episodes=1, n_frames_per_episode=5)
buffer.add_data(new_data)
buffer.tolerance_s = 0.04
item = buffer[2]
data, is_pad = item["index"], item["index_is_pad"]
assert torch.equal(data, torch.tensor([0, 0, 2, 4, 4])), "Data does not match expected values"
assert torch.equal(is_pad, torch.tensor([True, False, False, True, True])), (
"Padding does not match expected values"
)
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
@pytest.mark.parametrize("offline_dataset_size", [1, 6])
@pytest.mark.parametrize("online_dataset_size", [0, 4])
@pytest.mark.parametrize("online_sampling_ratio", [0.0, 1.0])
def test_compute_sampler_weights_trivial(
lerobot_dataset_factory,
tmp_path,
offline_dataset_size: int,
online_dataset_size: int,
online_sampling_ratio: float,
):
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=offline_dataset_size)
online_dataset, _ = make_new_buffer()
if online_dataset_size > 0:
online_dataset.add_data(
make_spoof_data_frames(n_episodes=2, n_frames_per_episode=online_dataset_size // 2)
)
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=online_sampling_ratio
)
if offline_dataset_size == 0 or online_dataset_size == 0:
expected_weights = torch.ones(offline_dataset_size + online_dataset_size)
elif online_sampling_ratio == 0:
expected_weights = torch.cat([torch.ones(offline_dataset_size), torch.zeros(online_dataset_size)])
elif online_sampling_ratio == 1:
expected_weights = torch.cat([torch.zeros(offline_dataset_size), torch.ones(online_dataset_size)])
expected_weights /= expected_weights.sum()
torch.testing.assert_close(weights, expected_weights)
def test_compute_sampler_weights_nontrivial_ratio(lerobot_dataset_factory, tmp_path):
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=4)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
online_sampling_ratio = 0.8
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=online_sampling_ratio
)
torch.testing.assert_close(
weights, torch.tensor([0.05, 0.05, 0.05, 0.05, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1])
)
def test_compute_sampler_weights_nontrivial_ratio_and_drop_last_n(lerobot_dataset_factory, tmp_path):
# Arbitrarily set small dataset sizes, making sure to have uneven sizes.
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=4)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
weights = compute_sampler_weights(
offline_dataset, online_dataset=online_dataset, online_sampling_ratio=0.8, online_drop_n_last_frames=1
)
torch.testing.assert_close(
weights, torch.tensor([0.05, 0.05, 0.05, 0.05, 0.2, 0.0, 0.2, 0.0, 0.2, 0.0, 0.2, 0.0])
)
def test_compute_sampler_weights_drop_n_last_frames(lerobot_dataset_factory, tmp_path):
"""Note: test copied from test_sampler."""
offline_dataset = lerobot_dataset_factory(tmp_path, total_episodes=1, total_frames=2)
online_dataset, _ = make_new_buffer()
online_dataset.add_data(make_spoof_data_frames(n_episodes=4, n_frames_per_episode=2))
weights = compute_sampler_weights(
offline_dataset,
offline_drop_n_last_frames=1,
online_dataset=online_dataset,
online_sampling_ratio=0.5,
online_drop_n_last_frames=1,
)
torch.testing.assert_close(weights, torch.tensor([0.5, 0, 0.125, 0, 0.125, 0, 0.125, 0, 0.125, 0]))

View File

@@ -0,0 +1,90 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from datasets import Dataset
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.sampler import EpisodeAwareSampler
from lerobot.common.datasets.utils import (
hf_transform_to_torch,
)
def test_drop_n_first_frames():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
sampler = EpisodeAwareSampler(episode_data_index, drop_n_first_frames=1)
assert sampler.indices == [1, 4, 5]
assert len(sampler) == 3
assert list(sampler) == [1, 4, 5]
def test_drop_n_last_frames():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
sampler = EpisodeAwareSampler(episode_data_index, drop_n_last_frames=1)
assert sampler.indices == [0, 3, 4]
assert len(sampler) == 3
assert list(sampler) == [0, 3, 4]
def test_episode_indices_to_use():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
sampler = EpisodeAwareSampler(episode_data_index, episode_indices_to_use=[0, 2])
assert sampler.indices == [0, 1, 3, 4, 5]
assert len(sampler) == 5
assert list(sampler) == [0, 1, 3, 4, 5]
def test_shuffle():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
sampler = EpisodeAwareSampler(episode_data_index, shuffle=False)
assert sampler.indices == [0, 1, 2, 3, 4, 5]
assert len(sampler) == 6
assert list(sampler) == [0, 1, 2, 3, 4, 5]
sampler = EpisodeAwareSampler(episode_data_index, shuffle=True)
assert sampler.indices == [0, 1, 2, 3, 4, 5]
assert len(sampler) == 6
assert set(sampler) == {0, 1, 2, 3, 4, 5}

View File

@@ -0,0 +1,55 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
from datasets import Dataset
from huggingface_hub import DatasetCard
from lerobot.common.datasets.push_dataset_to_hub.utils import calculate_episode_data_index
from lerobot.common.datasets.utils import create_lerobot_dataset_card, hf_transform_to_torch
def test_default_parameters():
card = create_lerobot_dataset_card()
assert isinstance(card, DatasetCard)
assert card.data.tags == ["LeRobot"]
assert card.data.task_categories == ["robotics"]
assert card.data.configs == [
{
"config_name": "default",
"data_files": "data/*/*.parquet",
}
]
def test_with_tags():
tags = ["tag1", "tag2"]
card = create_lerobot_dataset_card(tags=tags)
assert card.data.tags == ["LeRobot", "tag1", "tag2"]
def test_calculate_episode_data_index():
dataset = Dataset.from_dict(
{
"timestamp": [0.1, 0.2, 0.3, 0.4, 0.5, 0.6],
"index": [0, 1, 2, 3, 4, 5],
"episode_index": [0, 0, 1, 2, 2, 2],
},
)
dataset.set_transform(hf_transform_to_torch)
episode_data_index = calculate_episode_data_index(dataset)
assert torch.equal(episode_data_index["from"], torch.tensor([0, 2, 3]))
assert torch.equal(episode_data_index["to"], torch.tensor([2, 3, 6]))

View File

@@ -0,0 +1,33 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pytest
from lerobot.scripts.visualize_dataset import visualize_dataset
@pytest.mark.skip("TODO: add dummy videos")
def test_visualize_local_dataset(tmp_path, lerobot_dataset_factory):
root = tmp_path / "dataset"
output_dir = tmp_path / "outputs"
dataset = lerobot_dataset_factory(root=root)
rrd_path = visualize_dataset(
dataset,
episode_index=0,
batch_size=32,
save=True,
output_dir=output_dir,
)
assert rrd_path.exists()