forked from tangger/lerobot
Add diffusion policy (train and eval works, TODO: reproduce results)
This commit is contained in:
@@ -122,11 +122,6 @@ def train(cfg: dict, out_dir=None, job_name=None):
|
||||
start_time = time.time()
|
||||
step = 0 # number of policy update
|
||||
|
||||
print("First eval_policy_and_log with a random model or pretrained")
|
||||
eval_policy_and_log(
|
||||
env, td_policy, step, online_episode_idx, start_time, cfg, L, is_offline=True
|
||||
)
|
||||
|
||||
for offline_step in range(cfg.offline_steps):
|
||||
if offline_step == 0:
|
||||
print("Start offline training on a fixed dataset")
|
||||
|
||||
Reference in New Issue
Block a user