forked from tangger/lerobot
Updated comments
This commit is contained in:
@@ -1,3 +1,8 @@
|
||||
"""
|
||||
This script demonstrates how to implement torchvision image augmentation on an instance of a LeRobotDataset and how to show some transformed images.
|
||||
The transformations are passed to the dataset as an argument upon creation, and transforms are applied to the observation images before they are returned.
|
||||
"""
|
||||
|
||||
from pathlib import Path
|
||||
|
||||
from torchvision.transforms import ToPILImage, v2
|
||||
@@ -6,7 +11,7 @@ from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
|
||||
|
||||
to_pil = ToPILImage()
|
||||
|
||||
# Create a directory to store the training checkpoint.
|
||||
# Create a directory to store output images
|
||||
output_dir = Path("outputs/image_transforms")
|
||||
output_dir.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
@@ -15,10 +20,10 @@ repo_id = "lerobot/aloha_static_tape"
|
||||
# Create a LeRobotDataset with no transformations
|
||||
dataset = LeRobotDataset(repo_id, transform=None)
|
||||
|
||||
# Get the index of the first frame in the first episode
|
||||
# Get the index of the first observation in the first episode
|
||||
first_idx = dataset.episode_data_index["from"][0].item()
|
||||
|
||||
# Get the frame from the first camera
|
||||
# Get the frame corresponding to the first camera
|
||||
frame = dataset[first_idx][dataset.camera_keys[0]]
|
||||
|
||||
# Save the original frame
|
||||
@@ -35,7 +40,7 @@ transforms = v2.Compose(
|
||||
]
|
||||
)
|
||||
|
||||
# Create a LeRobotDataset with the defined transformations
|
||||
# Create another LeRobotDataset with the defined transformations
|
||||
transformed_dataset = LeRobotDataset(repo_id, transform=transforms)
|
||||
|
||||
# Get a frame from the transformed dataset
|
||||
|
||||
Reference in New Issue
Block a user