Wandb works, One output dir

This commit is contained in:
Cadene
2024-02-22 12:14:12 +00:00
parent ece89730e6
commit e3643d6146
11 changed files with 200 additions and 100 deletions

View File

@@ -20,24 +20,47 @@ from lerobot.scripts.eval import eval_policy
@hydra.main(version_base=None, config_name="default", config_path="../configs")
def train(cfg: dict):
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
def train_notebook(
out_dir=None, job_name=None, config_name="default", config_path="../configs"
):
from hydra import compose, initialize
hydra.core.global_hydra.GlobalHydra.instance().clear()
initialize(config_path=config_path)
cfg = compose(config_name=config_name)
train(cfg, out_dir=out_dir, job_name=job_name)
def train(cfg: dict, out_dir=None, job_name=None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
assert torch.cuda.is_available()
set_seed(cfg.seed)
print(colored("Work dir:", "yellow", attrs=["bold"]), cfg.log_dir)
print(colored("Work dir:", "yellow", attrs=["bold"]), out_dir)
env = make_env(cfg)
policy = TDMPC(cfg)
if cfg.pretrained_model_path:
ckpt_path = (
"/home/rcadene/code/fowm/logs/xarm_lift/all/default/2/models/offline.pt"
)
if "offline" in cfg.pretrained_model_path:
policy.step = 25000
elif "final" in cfg.pretrained_model_path:
policy.step = 100000
else:
raise NotImplementedError()
policy.load(ckpt_path)
# TODO(rcadene): hack for old pretrained models from fowm
if "fowm" in cfg.pretrained_model_path:
if "offline" in cfg.pretrained_model_path:
policy.step = 25000
elif "final" in cfg.pretrained_model_path:
policy.step = 100000
else:
raise NotImplementedError()
policy.load(cfg.pretrained_model_path)
td_policy = TensorDictModule(
policy,
@@ -65,7 +88,7 @@ def train(cfg: dict):
sampler=online_sampler,
)
L = Logger(cfg.log_dir, cfg)
L = Logger(out_dir, job_name, cfg)
online_episode_idx = 0
start_time = time.time()
@@ -95,12 +118,14 @@ def train(cfg: dict):
)
online_buffer.extend(rollout)
ep_reward = rollout["next", "reward"].sum()
ep_sum_reward = rollout["next", "reward"].sum()
ep_max_reward = rollout["next", "reward"].max()
ep_success = rollout["next", "success"].any()
online_episode_idx += 1
rollout_metrics = {
"avg_reward": np.nanmean(ep_reward),
"avg_sum_reward": np.nanmean(ep_sum_reward),
"avg_max_reward": np.nanmean(ep_max_reward),
"pc_success": np.nanmean(ep_success) * 100,
}
num_updates = len(rollout) * cfg.utd
@@ -137,23 +162,23 @@ def train(cfg: dict):
env,
td_policy,
num_episodes=cfg.eval_episodes,
# TODO(rcadene): add step, env_step, L.video
env_step=env_step,
wandb=L._wandb,
)
common_metrics.update(eval_metrics)
L.log(common_metrics, category="eval")
last_log_step = env_step - env_step % cfg.eval_freq
# Save model periodically
# if cfg.save_model and env_step - last_save_step >= cfg.save_freq:
# L.save_model(policy, identifier=env_step)
# print(f"Model has been checkpointed at step {env_step}")
# last_save_step = env_step - env_step % cfg.save_freq
if cfg.save_model and env_step - last_save_step >= cfg.save_freq:
L.save_model(policy, identifier=env_step)
print(f"Model has been checkpointed at step {env_step}")
last_save_step = env_step - env_step % cfg.save_freq
# if cfg.save_model and is_offline and _step >= cfg.offline_steps:
# # save the model after offline training
# L.save_model(policy, identifier="offline")
if cfg.save_model and is_offline and _step >= cfg.offline_steps:
# save the model after offline training
L.save_model(policy, identifier="offline")
step = _step
@@ -177,4 +202,4 @@ def train(cfg: dict):
if __name__ == "__main__":
train()
train_cli()