forked from tangger/lerobot
merge but remove refactor of save_camera_images
This commit is contained in:
@@ -45,7 +45,7 @@ poetry install --sync --extras "dynamixel"
|
||||
```bash
|
||||
conda install -c conda-forge ffmpeg
|
||||
pip uninstall opencv-python
|
||||
conda install -c conda-forge opencv>=4.10.0
|
||||
conda install -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
You are now ready to plug the 5V power supply to the motor bus of the leader arm (the smaller one) since all its motors only require 5V.
|
||||
|
||||
158
examples/8_use_stretch.md
Normal file
158
examples/8_use_stretch.md
Normal file
@@ -0,0 +1,158 @@
|
||||
This tutorial explains how to use [Stretch 3](https://hello-robot.com/stretch-3-product) with LeRobot.
|
||||
|
||||
## Setup
|
||||
|
||||
Familiarize yourself with Stretch by following its [tutorials](https://docs.hello-robot.com/0.3/getting_started/hello_robot/) (recommended).
|
||||
|
||||
To use LeRobot on Stretch, 3 options are available:
|
||||
- [tethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup)
|
||||
- [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup)
|
||||
- ssh directly into Stretch (you will first need to install and configure openssh-server on stretch using one of the two above setups)
|
||||
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
On Stretch's CLI, follow these steps:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Comment out these lines in `~/.profile` (this can mess up paths used by conda and ~/.local/bin should already be in your PATH)
|
||||
```
|
||||
# set PATH so it includes user's private bin if it exists
|
||||
if [ -d "$HOME/.local/bin" ] ; then
|
||||
PATH="$HOME/.local/bin:$PATH"
|
||||
fi
|
||||
```
|
||||
|
||||
3. Restart shell or `source ~/.bashrc`
|
||||
|
||||
4. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
5. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
6. Install LeRobot with stretch dependencies:
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[stretch]"
|
||||
```
|
||||
|
||||
> **Note:** If you get this message, you can ignore it: `ERROR: pip's dependency resolver does not currently take into account all the packages that are installed.`
|
||||
|
||||
And install extra dependencies for recording datasets on Linux:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
7. Run a [system check](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#system-check) to make sure your robot is ready:
|
||||
```bash
|
||||
stretch_system_check.py
|
||||
```
|
||||
|
||||
> **Note:** You may need to free the "robot process" after booting Stretch by running `stretch_free_robot_process.py`. For more info this Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#turning-off-gamepad-teleoperation).
|
||||
|
||||
You should get something like this:
|
||||
```bash
|
||||
For use with S T R E T C H (R) from Hello Robot Inc.
|
||||
---------------------------------------------------------------------
|
||||
|
||||
Model = Stretch 3
|
||||
Tool = DexWrist 3 w/ Gripper
|
||||
Serial Number = stretch-se3-3054
|
||||
|
||||
---- Checking Hardware ----
|
||||
[Pass] Comms are ready
|
||||
[Pass] Actuators are ready
|
||||
[Warn] Sensors not ready (IMU AZ = -10.19 out of range -10.1 to -9.5)
|
||||
[Pass] Battery voltage is 13.6 V
|
||||
|
||||
---- Checking Software ----
|
||||
[Pass] Ubuntu 22.04 is ready
|
||||
[Pass] All APT pkgs are setup correctly
|
||||
[Pass] Firmware is up-to-date
|
||||
[Pass] Python pkgs are up-to-date
|
||||
[Pass] ROS2 Humble is ready
|
||||
```
|
||||
|
||||
## Teleoperate, record a dataset and run a policy
|
||||
|
||||
**Calibrate (Optional)**
|
||||
Before operating Stretch, you need to [home](https://docs.hello-robot.com/0.3/getting_started/stretch_hardware_overview/#homing) it first. Be mindful about giving Stretch some space as this procedure will move the robot's arm and gripper. Now run this command:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py calibrate \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml
|
||||
```
|
||||
This is equivalent to running `stretch_robot_home.py`
|
||||
|
||||
> **Note:** If you run any of the LeRobot scripts below and Stretch is not poperly homed, it will automatically home/calibrate first.
|
||||
|
||||
**Teleoperate**
|
||||
Before trying teleoperation, you need activate the gamepad controller by pressing the middle button. For more info, see Stretch's [doc](https://docs.hello-robot.com/0.3/getting_started/hello_robot/#gamepad-teleoperation).
|
||||
|
||||
Now try out teleoperation (see above documentation to learn about the gamepad controls):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml
|
||||
```
|
||||
This is essentially the same as running `stretch_gamepad_teleop.py`
|
||||
|
||||
**Record a dataset**
|
||||
Once you're familiar with the gamepad controls and after a bit of practice, you can try to record your first dataset with Stretch.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record one episode:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml \
|
||||
--fps 20 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/stretch_test \
|
||||
--tags stretch tutorial \
|
||||
--warmup-time-s 3 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 1 \
|
||||
--push-to-hub 0
|
||||
```
|
||||
|
||||
> **Note:** If you're using ssh to connect to Stretch and run this script, you won't be able to visualize its cameras feed (though they will still be recording). To see the cameras stream, use [tethered](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#tethered-setup) or [untethered setup](https://docs.hello-robot.com/0.3/getting_started/connecting_to_stretch/#untethered-setup).
|
||||
|
||||
**Replay an episode**
|
||||
Now try to replay this episode (make sure the robot's initial position is the same):
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py replay \
|
||||
--robot-path lerobot/configs/robot/stretch.yaml \
|
||||
--fps 20 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/stretch_test \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
Follow [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) to train a policy on your data and run inference on your robot. You will need to adapt the code for Stretch.
|
||||
|
||||
> TODO(rcadene, aliberts): Add already setup environment and policy yaml configuration files
|
||||
|
||||
If you need help, please reach out on Discord in the channel `#stretch3-mobile-arm`.
|
||||
179
examples/9_use_aloha.md
Normal file
179
examples/9_use_aloha.md
Normal file
@@ -0,0 +1,179 @@
|
||||
This tutorial explains how to use [Aloha and Aloha 2 stationary](https://www.trossenrobotics.com/aloha-stationary) with LeRobot.
|
||||
|
||||
## Setup
|
||||
|
||||
Follow the [documentation from Trossen Robotics](https://docs.trossenrobotics.com/aloha_docs/getting_started/stationary/hardware_setup.html) for setting up the hardware and plugging the 4 arms and 4 cameras to your computer.
|
||||
|
||||
|
||||
## Install LeRobot
|
||||
|
||||
On your computer:
|
||||
|
||||
1. [Install Miniconda](https://docs.anaconda.com/miniconda/#quick-command-line-install):
|
||||
```bash
|
||||
mkdir -p ~/miniconda3
|
||||
wget https://repo.anaconda.com/miniconda/Miniconda3-latest-Linux-x86_64.sh -O ~/miniconda3/miniconda.sh
|
||||
bash ~/miniconda3/miniconda.sh -b -u -p ~/miniconda3
|
||||
rm ~/miniconda3/miniconda.sh
|
||||
~/miniconda3/bin/conda init bash
|
||||
```
|
||||
|
||||
2. Restart shell or `source ~/.bashrc`
|
||||
|
||||
3. Create and activate a fresh conda environment for lerobot
|
||||
```bash
|
||||
conda create -y -n lerobot python=3.10 && conda activate lerobot
|
||||
```
|
||||
|
||||
4. Clone LeRobot:
|
||||
```bash
|
||||
git clone https://github.com/huggingface/lerobot.git ~/lerobot
|
||||
```
|
||||
|
||||
5. Install LeRobot with dependencies for the Aloha motors (dynamixel) and cameras (intelrealsense):
|
||||
```bash
|
||||
cd ~/lerobot && pip install -e ".[dynamixel intelrealsense]"
|
||||
```
|
||||
|
||||
And install extra dependencies for recording datasets on Linux:
|
||||
```bash
|
||||
conda install -y -c conda-forge ffmpeg
|
||||
pip uninstall -y opencv-python
|
||||
conda install -y -c conda-forge "opencv>=4.10.0"
|
||||
```
|
||||
|
||||
## Teleoperate
|
||||
|
||||
**/!\ FOR SAFETY, READ THIS /!\**
|
||||
Teleoperation consists in manually operating the leader arms to move the follower arms. Importantly:
|
||||
1. Make sure your leader arms are in the same position as the follower arms, so that the follower arms don't move too fast to match the leader arms,
|
||||
2. Our code assumes that your robot has been assembled following Trossen Robotics instructions. This allows us to skip calibration, as we use the pre-defined calibration files in `.cache/calibration/aloha_default`. If you replace a motor, make sure you follow the exact instructions from Trossen Robotics.
|
||||
|
||||
By running the following code, you can start your first **SAFE** teleoperation:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
--robot-overrides max_relative_target=5
|
||||
```
|
||||
|
||||
By adding `--robot-overrides max_relative_target=5`, we override the default value for `max_relative_target` defined in `lerobot/configs/robot/aloha.yaml`. It is expected to be `5` to limit the magnitude of the movement for more safety, but the teloperation won't be smooth. When you feel confident, you can disable this limit by adding `--robot-overrides max_relative_target=null` to the command line:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py teleoperate \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
--robot-overrides max_relative_target=null
|
||||
```
|
||||
|
||||
## Record a dataset
|
||||
|
||||
Once you're familiar with teleoperation, you can record your first dataset with Aloha.
|
||||
|
||||
If you want to use the Hugging Face hub features for uploading your dataset and you haven't previously done it, make sure you've logged in using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
|
||||
```bash
|
||||
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
|
||||
```
|
||||
|
||||
Store your Hugging Face repository name in a variable to run these commands:
|
||||
```bash
|
||||
HF_USER=$(huggingface-cli whoami | head -n 1)
|
||||
echo $HF_USER
|
||||
```
|
||||
|
||||
Record 2 episodes and upload your dataset to the hub:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
--robot-overrides max_relative_target=null \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/aloha_test \
|
||||
--tags aloha tutorial \
|
||||
--warmup-time-s 5 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 2 \
|
||||
--push-to-hub 1
|
||||
```
|
||||
|
||||
## Visualize a dataset
|
||||
|
||||
If you uploaded your dataset to the hub with `--push-to-hub 1`, you can [visualize your dataset online](https://huggingface.co/spaces/lerobot/visualize_dataset) by copy pasting your repo id given by:
|
||||
```bash
|
||||
echo ${HF_USER}/aloha_test
|
||||
```
|
||||
|
||||
If you didn't upload with `--push-to-hub 0`, you can also visualize it locally with:
|
||||
```bash
|
||||
python lerobot/scripts/visualize_dataset_html.py \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/aloha_test
|
||||
```
|
||||
|
||||
## Replay an episode
|
||||
|
||||
**/!\ FOR SAFETY, READ THIS /!\**
|
||||
Replay consists in automatically replaying the sequence of actions (i.e. goal positions for your motors) recorded in a given dataset episode. Make sure the current initial position of your robot is similar to the one in your episode, so that your follower arms don't move too fast to go to the first goal positions. For safety, you might want to add `--robot-overrides max_relative_target=5` to your command line as explained above.
|
||||
|
||||
Now try to replay the first episode on your robot:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py replay \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
--robot-overrides max_relative_target=null \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/aloha_test \
|
||||
--episode 0
|
||||
```
|
||||
|
||||
## Train a policy
|
||||
|
||||
To train a policy to control your robot, use the [`python lerobot/scripts/train.py`](../lerobot/scripts/train.py) script. A few arguments are required. Here is an example command:
|
||||
```bash
|
||||
DATA_DIR=data python lerobot/scripts/train.py \
|
||||
dataset_repo_id=${HF_USER}/aloha_test \
|
||||
policy=act_aloha_real \
|
||||
env=aloha_real \
|
||||
hydra.run.dir=outputs/train/act_aloha_test \
|
||||
hydra.job.name=act_aloha_test \
|
||||
device=cuda \
|
||||
wandb.enable=true
|
||||
```
|
||||
|
||||
Let's explain it:
|
||||
1. We provided the dataset as argument with `dataset_repo_id=${HF_USER}/aloha_test`.
|
||||
2. We provided the policy with `policy=act_aloha_real`. This loads configurations from [`lerobot/configs/policy/act_aloha_real.yaml`](../lerobot/configs/policy/act_aloha_real.yaml). Importantly, this policy uses 4 cameras as input `cam_right_wrist`, `cam_left_wrist`, `cam_high`, and `cam_low`.
|
||||
3. We provided an environment as argument with `env=aloha_real`. This loads configurations from [`lerobot/configs/env/aloha_real.yaml`](../lerobot/configs/env/aloha_real.yaml). Note: this yaml defines 18 dimensions for the `state_dim` and `action_dim`, corresponding to 18 motors, not 14 motors as used in previous Aloha work. This is because, we include the `shoulder_shadow` and `elbow_shadow` motors for simplicity.
|
||||
4. We provided `device=cuda` since we are training on a Nvidia GPU.
|
||||
5. We provided `wandb.enable=true` to use [Weights and Biases](https://docs.wandb.ai/quickstart) for visualizing training plots. This is optional but if you use it, make sure you are logged in by running `wandb login`.
|
||||
6. We added `DATA_DIR=data` to access your dataset stored in your local `data` directory. If you dont provide `DATA_DIR`, your dataset will be downloaded from Hugging Face hub to your cache folder `$HOME/.cache/hugginface`. In future versions of `lerobot`, both directories will be in sync.
|
||||
|
||||
Training should take several hours. You will find checkpoints in `outputs/train/act_aloha_test/checkpoints`.
|
||||
|
||||
## Evaluate your policy
|
||||
|
||||
You can use the `record` function from [`lerobot/scripts/control_robot.py`](../lerobot/scripts/control_robot.py) but with a policy checkpoint as input. For instance, run this command to record 10 evaluation episodes:
|
||||
```bash
|
||||
python lerobot/scripts/control_robot.py record \
|
||||
--robot-path lerobot/configs/robot/aloha.yaml \
|
||||
--robot-overrides max_relative_target=null \
|
||||
--fps 30 \
|
||||
--root data \
|
||||
--repo-id ${HF_USER}/eval_act_aloha_test \
|
||||
--tags aloha tutorial eval \
|
||||
--warmup-time-s 5 \
|
||||
--episode-time-s 40 \
|
||||
--reset-time-s 10 \
|
||||
--num-episodes 10 \
|
||||
--num-image-writer-processes 1 \
|
||||
-p outputs/train/act_aloha_test/checkpoints/last/pretrained_model
|
||||
```
|
||||
|
||||
As you can see, it's almost the same command as previously used to record your training dataset. Two things changed:
|
||||
1. There is an additional `-p` argument which indicates the path to your policy checkpoint with (e.g. `-p outputs/train/eval_aloha_test/checkpoints/last/pretrained_model`). You can also use the model repository if you uploaded a model checkpoint to the hub (e.g. `-p ${HF_USER}/act_aloha_test`).
|
||||
2. The name of dataset begins by `eval` to reflect that you are running inference (e.g. `--repo-id ${HF_USER}/eval_act_aloha_test`).
|
||||
3. We use `--num-image-writer-processes 1` instead of the default value (`0`). On our computer, using a dedicated process to write images from the 4 cameras on disk allows to reach constent 30 fps during inference. Feel free to explore different values for `--num-image-writer-processes`.
|
||||
|
||||
## More
|
||||
|
||||
Follow this [previous tutorial](https://github.com/huggingface/lerobot/blob/main/examples/7_get_started_with_real_robot.md#4-train-a-policy-on-your-data) for a more in-depth explaination.
|
||||
|
||||
If you have any question or need help, please reach out on Discord in the channel `#aloha-arm`.
|
||||
Reference in New Issue
Block a user