add train and evals

This commit is contained in:
Thomas Wolf
2024-06-09 14:03:47 +02:00
parent 797f79f182
commit ef074d7281
14 changed files with 184 additions and 85 deletions

View File

@@ -27,9 +27,9 @@ Follow these steps:
## 0 - record examples
Run the `0_record_training_data.py` example, selecting the duration and number of episodes you want to record, e.g.
Run the `record_training_data.py` example, selecting the duration and number of episodes you want to record, e.g.
```
DATA_DIR='./data' python 0_record_training_data.py \
DATA_DIR='./data' python record_training_data.py \
--repo-id=thomwolf/blue_red_sort \
--num-episodes=50 \
--num-frames=400
@@ -44,15 +44,34 @@ TODO:
Use the standard dataset visualization script pointing it to the right folder:
```
DATA_DIR='./data' python visualize_dataset.py python lerobot/scripts/visualize_dataset.py \
DATA_DIR='./data' python ../../lerobot/scripts/visualize_dataset.py \
--repo-id thomwolf/blue_red_sort \
--episode-index 0
```
## (soon) Train a policy
## 2 - Train a policy
Run `1_train_real_policy.py` example
From the example directory let's run this command to train a model using ACT
## (soon) Evaluate the policy in the real world
```
DATA_DIR='./data' python ../../lerobot/scripts/train.py \
device=cuda \
hydra.searchpath=[file://./train_config/] \
hydra.run.dir=./outputs/train/blue_red_sort \
dataset_repo_id=thomwolf/blue_red_sort \
env=gym_real_world \
policy=act_real_world \
wandb.enable=false
```
Run `2_evaluate_real_policy.py` example
## 3 - Evaluate the policy in the real world
From the example directory let's run this command to evaluate our policy.
The configuration for running the policy is in the checkpoint of the model.
You can override parameters as follow:
```
python run_policy.py \
-p ./outputs/train/blue_red_sort/checkpoints/last/pretrained_model/
env.episode_length=1000
```