Added server directory in lerobot/scripts that contains scripts and the protobuf message types to split training into two processes, acting and learning. The actor rollouts the policy and collects interaction data while the learner recieves the data, trains the policy and sends the updated parameters to the actor. The two scripts are ran simultaneously

Co-authored-by: Adil Zouitine <adilzouitinegm@gmail.com>
This commit is contained in:
Michel Aractingi
2025-01-28 15:52:03 +00:00
committed by AdilZouitine
parent 83dc00683c
commit ef64ba91d9
5 changed files with 751 additions and 1 deletions

View File

@@ -0,0 +1,394 @@
import grpc
from concurrent import futures
import functools
import logging
import queue
import pickle
import torch
import torch.nn.functional as F
import io
import time
from pprint import pformat
import random
from typing import Optional, Sequence, TypedDict, Callable
import hydra
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from deepdiff import DeepDiff
from omegaconf import DictConfig, OmegaConf
from threading import Thread, Lock
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
# TODO: Remove the import of maniskill
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.logger import Logger, log_output_dir
from lerobot.common.policies.factory import make_policy
from lerobot.common.policies.sac.modeling_sac import SACPolicy
from lerobot.common.policies.utils import get_device_from_parameters
from lerobot.common.utils.utils import (
format_big_number,
get_safe_torch_device,
init_hydra_config,
init_logging,
set_global_seed,
)
from lerobot.scripts.server.buffer import ReplayBuffer, move_transition_to_device, concatenate_batch_transitions, move_state_dict_to_device, Transition
# Import generated stubs
import hilserl_pb2
import hilserl_pb2_grpc
logging.basicConfig(level=logging.INFO)
# TODO: Implement it in cleaner way maybe
transition_queue = queue.Queue()
interaction_message_queue = queue.Queue()
# 1) Implement the LearnerService so the Actor can send transitions here.
class LearnerServiceServicer(hilserl_pb2_grpc.LearnerServiceServicer):
# def SendTransition(self, request, context):
# """
# Actor calls this method to push a Transition -> Learner.
# """
# buffer = io.BytesIO(request.transition_bytes)
# transition = torch.load(buffer)
# transition_queue.put(transition)
# return hilserl_pb2.Empty()
def SendInteractionMessage(self, request, context):
"""
Actor calls this method to push a Transition -> Learner.
"""
content = pickle.loads(request.interaction_message_bytes)
interaction_message_queue.put(content)
return hilserl_pb2.Empty()
def stream_transitions_from_actor(port=50051):
"""
Runs a gRPC server listening for transitions from the Actor.
"""
time.sleep(10)
channel = grpc.insecure_channel(f'127.0.0.1:{port}',
options=[('grpc.max_send_message_length', -1),
('grpc.max_receive_message_length', -1)])
stub = hilserl_pb2_grpc.ActorServiceStub(channel)
for response in stub.StreamTransition(hilserl_pb2.Empty()):
if response.HasField('transition'):
buffer = io.BytesIO(response.transition.transition_bytes)
transition = torch.load(buffer)
transition_queue.put(transition)
if response.HasField('interaction_message'):
content = pickle.loads(response.interaction_message.interaction_message_bytes)
interaction_message_queue.put(content)
# NOTE: Cool down the CPU, if you comment this line you will make a huge bottleneck
time.sleep(0.001)
def learner_push_parameters(
policy: nn.Module, policy_lock: Lock, actor_host="127.0.0.1", actor_port=50052, seconds_between_pushes=5
):
"""
As a client, connect to the Actor's gRPC server (ActorService)
and periodically push new parameters.
"""
time.sleep(10)
# The Actor's server is presumably listening on a different port, e.g. 50052
channel = grpc.insecure_channel(f"{actor_host}:{actor_port}",
options=[('grpc.max_send_message_length', -1),
('grpc.max_receive_message_length', -1)])
actor_stub = hilserl_pb2_grpc.ActorServiceStub(channel)
while True:
with policy_lock:
params_dict = policy.actor.state_dict()
params_dict = move_state_dict_to_device(params_dict, device="cpu")
# Serialize
buf = io.BytesIO()
torch.save(params_dict, buf)
params_bytes = buf.getvalue()
# Push them to the Actors "SendParameters" method
response = actor_stub.SendParameters(hilserl_pb2.Parameters(parameter_bytes=params_bytes))
time.sleep(seconds_between_pushes)
# Checked
def add_actor_information(
cfg,
device,
replay_buffer: ReplayBuffer,
offline_replay_buffer: ReplayBuffer,
batch_size: int,
optimizers,
policy,
policy_lock: Lock,
buffer_lock: Lock,
offline_buffer_lock: Lock,
logger_lock: Lock,
logger: Logger,
):
"""
In a real application, you might run your training loop here,
reading from the transition queue and doing gradient updates.
"""
# NOTE: This function doesn't have a single responsibility, it should be split into multiple functions
# in the future. The reason why we did that is the GIL in Python. It's super slow the performance
# are divided by 200. So we need to have a single thread that does all the work.
start = time.time()
optimization_step = 0
while True:
time_for_adding_transitions = time.time()
while not transition_queue.empty():
transition_list = transition_queue.get()
for transition in transition_list:
transition = move_transition_to_device(transition, device=device)
replay_buffer.add(**transition)
logging.info(f"[LEARNER] size of replay buffer: {len(replay_buffer)}")
logging.info(f"[LEARNER] size of transition queues: {transition_queue.qsize()}")
while not interaction_message_queue.empty():
interaction_message = interaction_message_queue.get()
logger.log_dict(interaction_message,mode="train",custom_step_key="interaction_step")
logging.info(f"[LEARNER] size of interaction message queue: {interaction_message_queue.qsize()}")
# if len(replay_buffer.memory) < cfg.training.online_step_before_learning:
# continue
# for _ in range(cfg.policy.utd_ratio - 1):
# batch = replay_buffer.sample(batch_size)
# if cfg.dataset_repo_id is not None:
# batch_offline = offline_replay_buffer.sample(batch_size)
# batch = concatenate_batch_transitions(batch, batch_offline)
# actions = batch["action"]
# rewards = batch["reward"]
# observations = batch["state"]
# next_observations = batch["next_state"]
# done = batch["done"]
# with policy_lock:
# loss_critic = policy.compute_loss_critic(
# observations=observations,
# actions=actions,
# rewards=rewards,
# next_observations=next_observations,
# done=done,
# )
# optimizers["critic"].zero_grad()
# loss_critic.backward()
# optimizers["critic"].step()
# batch = replay_buffer.sample(batch_size)
# if cfg.dataset_repo_id is not None:
# batch_offline = offline_replay_buffer.sample(batch_size)
# batch = concatenate_batch_transitions(
# left_batch_transitions=batch, right_batch_transition=batch_offline
# )
# actions = batch["action"]
# rewards = batch["reward"]
# observations = batch["state"]
# next_observations = batch["next_state"]
# done = batch["done"]
# with policy_lock:
# loss_critic = policy.compute_loss_critic(
# observations=observations,
# actions=actions,
# rewards=rewards,
# next_observations=next_observations,
# done=done,
# )
# optimizers["critic"].zero_grad()
# loss_critic.backward()
# optimizers["critic"].step()
# training_infos = {}
# training_infos["loss_critic"] = loss_critic.item()
# if optimization_step % cfg.training.policy_update_freq == 0:
# for _ in range(cfg.training.policy_update_freq):
# with policy_lock:
# loss_actor = policy.compute_loss_actor(observations=observations)
# optimizers["actor"].zero_grad()
# loss_actor.backward()
# optimizers["actor"].step()
# training_infos["loss_actor"] = loss_actor.item()
# loss_temperature = policy.compute_loss_temperature(observations=observations)
# optimizers["temperature"].zero_grad()
# loss_temperature.backward()
# optimizers["temperature"].step()
# training_infos["loss_temperature"] = loss_temperature.item()
# if optimization_step % cfg.training.log_freq == 0:
# logger.log_dict(training_infos, step=optimization_step, mode="train")
# policy.update_target_networks()
# optimization_step += 1
# time_for_one_optimization_step = time.time() - time_for_one_optimization_step
# logger.log_dict({"[LEARNER] Time optimization step":time_for_one_optimization_step}, step=optimization_step, mode="train")
# time_for_one_optimization_step = time.time()
def make_optimizers_and_scheduler(cfg, policy):
optimizer_actor = torch.optim.Adam(
# NOTE: Handle the case of shared encoder where the encoder weights are not optimized with the gradient of the actor
params=policy.actor.parameters_to_optimize,
lr=policy.config.actor_lr,
)
optimizer_critic = torch.optim.Adam(
params=policy.critic_ensemble.parameters(), lr=policy.config.critic_lr
)
# We wrap policy log temperature in list because this is a torch tensor and not a nn.Module
optimizer_temperature = torch.optim.Adam(params=[policy.log_alpha], lr=policy.config.critic_lr)
lr_scheduler = None
optimizers = {
"actor": optimizer_actor,
"critic": optimizer_critic,
"temperature": optimizer_temperature,
}
return optimizers, lr_scheduler
def train(cfg: DictConfig, out_dir: str | None = None, job_name: str | None = None):
if out_dir is None:
raise NotImplementedError()
if job_name is None:
raise NotImplementedError()
init_logging()
logging.info(pformat(OmegaConf.to_container(cfg)))
logger = Logger(cfg, out_dir, wandb_job_name=job_name)
logger_lock = Lock()
set_global_seed(cfg.seed)
device = get_safe_torch_device(cfg.device, log=True)
torch.backends.cudnn.benchmark = True
torch.backends.cuda.matmul.allow_tf32 = True
logging.info("make_policy")
### Instantiate the policy in both the actor and learner processes
### To avoid sending a SACPolicy object through the port, we create a policy intance
### on both sides, the learner sends the updated parameters every n steps to update the actor's parameters
# TODO: At some point we should just need make sac policy
policy_lock = Lock()
with logger_lock:
policy: SACPolicy = make_policy(
hydra_cfg=cfg,
# dataset_stats=offline_dataset.meta.stats if not cfg.resume else None,
# Hack: But if we do online traning, we do not need dataset_stats
dataset_stats=None,
pretrained_policy_name_or_path=str(logger.last_pretrained_model_dir) if cfg.resume else None,
device=device,
)
assert isinstance(policy, nn.Module)
optimizers, lr_scheduler = make_optimizers_and_scheduler(cfg, policy)
# TODO: Handle resume
num_learnable_params = sum(p.numel() for p in policy.parameters() if p.requires_grad)
num_total_params = sum(p.numel() for p in policy.parameters())
log_output_dir(out_dir)
logging.info(f"{cfg.env.task=}")
logging.info(f"{cfg.training.online_steps=}")
logging.info(f"{num_learnable_params=} ({format_big_number(num_learnable_params)})")
logging.info(f"{num_total_params=} ({format_big_number(num_total_params)})")
buffer_lock = Lock()
replay_buffer = ReplayBuffer(
capacity=cfg.training.online_buffer_capacity, device=device, state_keys=cfg.policy.input_shapes.keys()
)
batch_size = cfg.training.batch_size
offline_buffer_lock = None
offline_replay_buffer = None
if cfg.dataset_repo_id is not None:
logging.info("make_dataset offline buffer")
offline_dataset = make_dataset(cfg)
logging.info("Convertion to a offline replay buffer")
offline_replay_buffer = ReplayBuffer.from_lerobot_dataset(
offline_dataset, device=device, state_keys=cfg.policy.input_shapes.keys()
)
offline_buffer_lock = Lock()
batch_size: int = batch_size // 2 # We will sample from both replay buffer
server_thread = Thread(target=stream_transitions_from_actor, args=(50051,), daemon=True)
server_thread.start()
# Start a background thread to process transitions from the queue
transition_thread = Thread(
target=add_actor_information,
daemon=True,
args=(cfg,
device,
replay_buffer,
offline_replay_buffer,
batch_size,
optimizers,
policy,
policy_lock,
buffer_lock,
offline_buffer_lock,
logger_lock,
logger),
)
transition_thread.start()
# param_push_thread = Thread(
# target=learner_push_parameters,
# args=(policy, policy_lock, "127.0.0.1", 50052, 15),
# # args=("127.0.0.1", 50052),
# daemon=True,
# )
# param_push_thread.start()
# interaction_thread = Thread(
# target=add_message_interaction_to_wandb,
# daemon=True,
# args=(cfg, logger, logger_lock),
# )
# interaction_thread.start()
transition_thread.join()
# param_push_thread.join()
server_thread.join()
# interaction_thread.join()
@hydra.main(version_base="1.2", config_name="default", config_path="../../configs")
def train_cli(cfg: dict):
train(
cfg,
out_dir=hydra.core.hydra_config.HydraConfig.get().run.dir,
job_name=hydra.core.hydra_config.HydraConfig.get().job.name,
)
if __name__ == "__main__":
train_cli()