Compare commits

..

13 Commits

Author SHA1 Message Date
Simon Alibert
624efd50c6 Remove _has_gym checks 2024-03-29 18:37:37 +01:00
Simon Alibert
7df64ba9b1 Remove envs dependencies 2024-03-29 17:27:42 +01:00
Simon Alibert
8505952e5a Update CI 2024-03-29 16:53:25 +01:00
Simon Alibert
f17b600198 Add aloha as package 2024-03-29 16:53:00 +01:00
Simon Alibert
8fc1008809 Fix imports 2024-03-29 16:47:18 +01:00
Simon Alibert
3d53e0fe0f Move make_env_task logic to aloha 2024-03-29 15:22:32 +01:00
Simon Alibert
b7b6c9bbf1 Package aloha 2024-03-29 14:45:21 +01:00
Simon Alibert
c41abc9a72 Update CI 2024-03-29 14:05:44 +01:00
Simon Alibert
8260a7010a Add xarm as package 2024-03-29 14:04:44 +01:00
Simon Alibert
3713a3a87b Package xarm 2024-03-29 13:59:09 +01:00
Simon Alibert
dfa6cc777f CI fix 2024-03-29 12:30:07 +01:00
Simon Alibert
c6002bb88f Add pusht as package 2024-03-29 12:03:49 +01:00
Simon Alibert
1d7ff65dc5 Package pusht 2024-03-29 11:29:05 +01:00
536 changed files with 21958 additions and 44399 deletions

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2015,
3058,
3061,
1071,
1071,
2035,
2152,
2029,
2499
],
"end_pos": [
-1008,
-1963,
-1966,
2141,
2143,
-971,
3043,
-1077,
3144
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-1024
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2035,
3024,
3019,
979,
981,
1982,
2166,
2124,
1968
],
"end_pos": [
-990,
-2017,
-2015,
2078,
2076,
-1030,
3117,
-1016,
2556
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2056,
2895,
2896,
1191,
1190,
2018,
2051,
2056,
2509
],
"end_pos": [
-1040,
-2004,
-2006,
2126,
2127,
-1010,
3050,
-1117,
3143
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,68 +0,0 @@
{
"homing_offset": [
2048,
3072,
3072,
-1024,
-1024,
2048,
-2048,
2048,
-2048
],
"drive_mode": [
1,
1,
1,
0,
0,
1,
0,
1,
0
],
"start_pos": [
2068,
3034,
3030,
1038,
1041,
1991,
1948,
2090,
1985
],
"end_pos": [
-1025,
-2014,
-2015,
2058,
2060,
-955,
3091,
-940,
2576
],
"calib_mode": [
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"DEGREE",
"LINEAR"
],
"motor_names": [
"waist",
"shoulder",
"shoulder_shadow",
"elbow",
"elbow_shadow",
"forearm_roll",
"wrist_angle",
"wrist_rotate",
"gripper"
]
}

View File

@@ -1,160 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Misc
.git
tmp
wandb
data
outputs
.vscode
rl
media
# Logging
logs
# HPC
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
*$py.class
# C extensions
*.so
# Distribution / packaging
.Python
build/
develop-eggs/
dist/
downloads/
eggs/
.eggs/
lib/
lib64/
parts/
sdist/
var/
wheels/
pip-wheel-metadata/
share/python-wheels/
*.egg-info/
.installed.cfg
*.egg
MANIFEST
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
*.manifest
*.spec
# Installer logs
pip-log.txt
pip-delete-this-directory.txt
# Unit test / coverage reports
!tests/data
htmlcov/
.tox/
.nox/
.coverage
.coverage.*
nosetests.xml
coverage.xml
*.cover
*.py,cover
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot
# Django stuff:
*.log
local_settings.py
db.sqlite3
db.sqlite3-journal
# Flask stuff:
instance/
.webassets-cache
# Scrapy stuff:
.scrapy
# Sphinx documentation
docs/_build/
# PyBuilder
target/
# Jupyter Notebook
.ipynb_checkpoints
# IPython
profile_default/
ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
# Celery stuff
celerybeat-schedule
celerybeat.pid
# SageMath parsed files
*.sage.py
# Spyder project settings
.spyderproject
.spyproject
# Rope project settings
.ropeproject
# mkdocs documentation
/site
# mypy
.mypy_cache/
.dmypy.json
dmypy.json
# Pyre type checker
.pyre/

18
.gitattributes vendored
View File

@@ -1,20 +1,2 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
*.memmap filter=lfs diff=lfs merge=lfs -text
*.stl filter=lfs diff=lfs merge=lfs -text
*.safetensors filter=lfs diff=lfs merge=lfs -text
*.mp4 filter=lfs diff=lfs merge=lfs -text
*.arrow filter=lfs diff=lfs merge=lfs -text
*.json !text !filter !merge !diff

View File

@@ -1,68 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: "\U0001F41B Bug Report"
description: Submit a bug report to help us improve LeRobot
body:
- type: markdown
attributes:
value: |
Thanks for taking the time to submit a bug report! 🐛
If this is not a bug related to the LeRobot library directly, but instead a general question about your code or the library specifically please use our [discord](https://discord.gg/s3KuuzsPFb).
- type: textarea
id: system-info
attributes:
label: System Info
description: If needed, you can share your lerobot configuration with us by running `python -m lerobot.scripts.display_sys_info` and copy-pasting its outputs below
render: Shell
placeholder: lerobot version, OS, python version, numpy version, torch version, and lerobot's configuration
validations:
required: true
- type: checkboxes
id: information-scripts-examples
attributes:
label: Information
description: 'The problem arises when using:'
options:
- label: "One of the scripts in the examples/ folder of LeRobot"
- label: "My own task or dataset (give details below)"
- type: textarea
id: reproduction
validations:
required: true
attributes:
label: Reproduction
description: |
If needed, provide a simple code sample that reproduces the problem you ran into. It can be a Colab link or just a code snippet.
Sharing error messages or stack traces could be useful as well!
Important! Use code tags to correctly format your code. See https://help.github.com/en/github/writing-on-github/creating-and-highlighting-code-blocks#syntax-highlighting
Try to avoid screenshots, as they are hard to read and don't allow copy-and-pasting.
placeholder: |
Steps to reproduce the behavior:
1.
2.
3.
- type: textarea
id: expected-behavior
validations:
required: true
attributes:
label: Expected behavior
description: "A clear and concise description of what you would expect to happen."

View File

@@ -1,34 +0,0 @@
## What this does
Explain what this PR does. Feel free to tag your PR with the appropriate label(s).
Examples:
| Title | Label |
|----------------------|-----------------|
| Fixes #[issue] | (🐛 Bug) |
| Adds new dataset | (🗃️ Dataset) |
| Optimizes something | (⚡️ Performance) |
## How it was tested
Explain/show how you tested your changes.
Examples:
- Added `test_something` in `tests/test_stuff.py`.
- Added `new_feature` and checked that training converges with policy X on dataset/environment Y.
- Optimized `some_function`, it now runs X times faster than previously.
## How to checkout & try? (for the reviewer)
Provide a simple way for the reviewer to try out your changes.
Examples:
```bash
pytest -sx tests/test_stuff.py::test_something
```
```bash
python lerobot/scripts/train.py --some.option=true
```
## SECTION TO REMOVE BEFORE SUBMITTING YOUR PR
**Note**: Anyone in the community is free to review the PR once the tests have passed. Feel free to tag
members/contributors who may be interested in your PR. Try to avoid tagging more than 3 people.
**Note**: Before submitting this PR, please read the [contributor guideline](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md#submitting-a-pull-request-pr).

3377
.github/poetry/cpu/poetry.lock generated vendored Normal file

File diff suppressed because it is too large Load Diff

118
.github/poetry/cpu/pyproject.toml vendored Normal file
View File

@@ -0,0 +1,118 @@
[tool.poetry]
name = "lerobot"
version = "0.1.0"
description = "🤗 LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
]
maintainers = [
"Alexander Soare <alexander.soare159@gmail.com>",
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
"Simon Alibert <alibert.sim@gmail.com>",
]
repository = "https://github.com/Cadene/lerobot"
readme = "README.md"
license = "Apache-2.0"
keywords = ["robotics, deep, reinforcement, learning, pytorch"]
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "lerobot"}]
[tool.poetry.dependencies]
python = "^3.10"
termcolor = "^2.4.0"
omegaconf = "^2.3.0"
pandas = "^2.2.1"
wandb = "^0.16.3"
moviepy = "^1.0.3"
imageio = {extras = ["pyav"], version = "^2.34.0"}
gdown = "^5.1.0"
hydra-core = "^1.3.2"
einops = "^0.7.0"
pygame = "^2.5.2"
pymunk = "^6.6.0"
zarr = "^2.17.0"
numba = "^0.59.0"
mpmath = "^1.3.0"
torch = {version = "^2.2.1", source = "torch-cpu"}
tensordict = {git = "https://github.com/pytorch/tensordict"}
torchrl = {git = "https://github.com/pytorch/rl", rev = "13bef426dcfa5887c6e5034a6e9697993fa92c37"}
opencv-python = "^4.9.0.80"
diffusers = "^0.26.3"
torchvision = {version = "^0.17.1", source = "torch-cpu"}
h5py = "^3.10.0"
robomimic = "0.2.0"
huggingface-hub = "^0.21.4"
cmake = "^3.29.0.1"
sim-pusht = { version = "^0.1.0", optional = true}
sim-xarm = { version = "^0.1.0", optional = true}
sim-aloha = { version = "^0.1.2", optional = true}
[tool.poetry.extras]
pusht = ["sim-pusht"]
xarm = ["sim-xarm"]
aloha = ["sim-aloha"]
[tool.poetry.group.dev.dependencies]
pre-commit = "^3.6.2"
debugpy = "^1.8.1"
[tool.poetry.group.test.dependencies]
pytest = "^8.1.0"
pytest-cov = "^5.0.0"
[[tool.poetry.source]]
name = "torch-cpu"
url = "https://download.pytorch.org/whl/cpu"
priority = "supplemental"
[tool.ruff]
line-length = 110
target-version = "py310"
exclude = [
".bzr",
".direnv",
".eggs",
".git",
".git-rewrite",
".hg",
".mypy_cache",
".nox",
".pants.d",
".pytype",
".ruff_cache",
".svn",
".tox",
".venv",
"__pypackages__",
"_build",
"buck-out",
"build",
"dist",
"node_modules",
"venv",
]
[tool.ruff.lint]
select = ["E4", "E7", "E9", "F", "I", "N", "B", "C4", "SIM"]
[tool.poetry-dynamic-versioning]
enable = true
[build-system]
requires = ["poetry-core>=1.0.0", "poetry-dynamic-versioning>=1.0.0,<2.0.0"]
build-backend = "poetry_dynamic_versioning.backend"

View File

@@ -1,135 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/build_docker_images.yml
name: Builds
on:
workflow_dispatch:
workflow_call:
schedule:
- cron: "0 1 * * *"
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
latest-cpu:
name: CPU
runs-on:
group: aws-general-8-plus
steps:
- name: Install Git LFS
run: |
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push CPU
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-cpu/Dockerfile
push: true
tags: huggingface/lerobot-cpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda:
name: GPU
runs-on:
group: aws-general-8-plus
steps:
- name: Install Git LFS
run: |
sudo apt-get update
sudo apt-get install git-lfs
git lfs install
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@v4
with:
lfs: true
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu/Dockerfile
push: true
tags: huggingface/lerobot-gpu
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}
latest-cuda-dev:
name: GPU Dev
runs-on:
group: aws-general-8-plus
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Login to DockerHub
uses: docker/login-action@v3
with:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
- name: Build and Push GPU dev
uses: docker/build-push-action@v5
with:
context: .
file: ./docker/lerobot-gpu-dev/Dockerfile
push: true
tags: huggingface/lerobot-gpu:dev
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}

View File

@@ -1,93 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/nightly.yml
name: Nightly
on:
workflow_dispatch:
schedule:
- cron: "0 2 * * *"
permissions: {}
# env:
# SLACK_API_TOKEN: ${{ secrets.SLACK_API_TOKEN }}
jobs:
run_all_tests_cpu:
name: CPU
strategy:
fail-fast: false
runs-on:
group: aws-general-8-plus
container:
image: huggingface/lerobot-cpu:latest
options: --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Tests
run: pytest -v --cov=./lerobot --disable-warnings tests
- name: Tests end-to-end
run: make test-end-to-end
run_all_tests_single_gpu:
name: GPU
strategy:
fail-fast: false
runs-on:
group: aws-g6-4xlarge-plus
env:
CUDA_VISIBLE_DEVICES: "0"
TEST_TYPE: "single_gpu"
container:
image: huggingface/lerobot-gpu:latest
options: --gpus all --shm-size "16gb"
credentials:
username: ${{ secrets.DOCKERHUB_USERNAME }}
password: ${{ secrets.DOCKERHUB_PASSWORD }}
defaults:
run:
shell: bash
working-directory: /lerobot
steps:
- name: Nvidia-smi
run: nvidia-smi
- name: Test
run: pytest -v --cov=./lerobot --cov-report=xml --disable-warnings tests
# TODO(aliberts): Link with HF Codecov account
# - name: Upload coverage reports to Codecov with GitHub Action
# uses: codecov/codecov-action@v4
# with:
# files: ./coverage.xml
# verbose: true
- name: Tests end-to-end
env:
DEVICE: cuda
run: make test-end-to-end
# - name: Generate Report
# if: always()
# run: |
# pip install slack_sdk tabulate
# python scripts/log_reports.py >> $GITHUB_STEP_SUMMARY

View File

@@ -1,72 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Quality
on:
workflow_dispatch:
workflow_call:
pull_request:
push:
branches:
- main
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
style:
name: Style
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Set up Python
uses: actions/setup-python@v4
with:
python-version: ${{ env.PYTHON_VERSION }}
- name: Get Ruff Version from pre-commit-config.yaml
id: get-ruff-version
run: |
RUFF_VERSION=$(awk '/repo: https:\/\/github.com\/astral-sh\/ruff-pre-commit/{flag=1;next}/rev:/{if(flag){print $2;exit}}' .pre-commit-config.yaml)
echo "ruff_version=${RUFF_VERSION}" >> $GITHUB_OUTPUT
- name: Install Ruff
env:
RUFF_VERSION: ${{ steps.get-ruff-version.outputs.ruff_version }}
run: python -m pip install "ruff==${RUFF_VERSION}"
- name: Ruff check
run: ruff check --output-format=github
- name: Ruff format
run: ruff format --diff
typos:
name: Typos
runs-on: ubuntu-latest
steps:
- name: Checkout Repository
uses: actions/checkout@v4
with:
persist-credentials: false
- name: typos-action
uses: crate-ci/typos@v1.29.10

View File

@@ -1,82 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Inspired by
# https://github.com/huggingface/peft/blob/main/.github/workflows/test-docker-build.yml
name: Test Dockerfiles
on:
pull_request:
paths:
# Run only when DockerFile files are modified
- "docker/**"
permissions: {}
env:
PYTHON_VERSION: "3.10"
jobs:
get_changed_files:
name: Detect modified Dockerfiles
runs-on: ubuntu-latest
outputs:
matrix: ${{ steps.set-matrix.outputs.matrix }}
steps:
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Get changed files
id: changed-files
uses: tj-actions/changed-files@v44
with:
files: docker/**
json: "true"
- name: Run step if only the files listed above change # zizmor: ignore[template-injection]
if: steps.changed-files.outputs.any_changed == 'true'
id: set-matrix
run: |
echo "matrix=${{ steps.changed-files.outputs.all_changed_files}}" >> $GITHUB_OUTPUT
build_modified_dockerfiles:
name: Build modified Docker images
needs: get_changed_files
runs-on:
group: aws-general-8-plus
if: needs.get_changed_files.outputs.matrix != ''
strategy:
fail-fast: false
matrix:
docker-file: ${{ fromJson(needs.get_changed_files.outputs.matrix) }}
steps:
- name: Set up Docker Buildx
uses: docker/setup-buildx-action@v3
with:
cache-binary: false
- name: Check out code
uses: actions/checkout@v4
with:
persist-credentials: false
- name: Build Docker image
uses: docker/build-push-action@v5
with:
file: ${{ matrix.docker-file }}
context: .
push: False
build-args: PYTHON_VERSION=${{ env.PYTHON_VERSION }}

View File

@@ -1,150 +1,234 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
name: Tests
on:
pull_request:
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "pyproject.toml"
- ".pre-commit-config.yaml"
- "Makefile"
- ".cache/**"
branches:
- main
types: [opened, synchronize, reopened, labeled]
push:
branches:
- main
paths:
- "lerobot/**"
- "tests/**"
- "examples/**"
- ".github/**"
- "pyproject.toml"
- ".pre-commit-config.yaml"
- "Makefile"
- ".cache/**"
permissions: {}
env:
UV_VERSION: "0.6.0"
jobs:
pytest:
name: Pytest
tests:
if: |
${{ github.event_name == 'pull_request' && contains(github.event.pull_request.labels.*.name, 'CI') }} ||
${{ github.event_name == 'push' }}
runs-on: ubuntu-latest
env:
POETRY_VERSION: 1.8.2
DATA_DIR: tests/data
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
#----------------------------------------------
# check-out repo and set-up python
#----------------------------------------------
- name: Check out repository
uses: actions/checkout@v4
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
lfs: true
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Install uv and python
uses: astral-sh/setup-uv@v5
- name: Set up python
id: setup-python
uses: actions/setup-python@v5
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
python-version: '3.10'
- name: Install lerobot (all extras)
run: uv sync --all-extras
- name: Test with pytest
run: |
uv run pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
pytest-minimal:
name: Pytest (minimal install)
runs-on: ubuntu-latest
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
#----------------------------------------------
# install & configure poetry
#----------------------------------------------
- name: Load cached Poetry installation
id: restore-poetry-cache
uses: actions/cache/restore@v3
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Install apt dependencies
run: sudo apt-get update && sudo apt-get install -y ffmpeg
- name: Install uv and python
uses: astral-sh/setup-uv@v5
- name: Install Poetry
if: steps.restore-poetry-cache.outputs.cache-hit != 'true'
uses: snok/install-poetry@v1
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
version: ${{ env.POETRY_VERSION }}
virtualenvs-create: true
installer-parallel: true
- name: Install lerobot
run: uv sync --extra "test"
- name: Test with pytest
run: |
uv run pytest tests -v --cov=./lerobot --durations=0 \
-W ignore::DeprecationWarning:imageio_ffmpeg._utils:7 \
-W ignore::UserWarning:torch.utils.data.dataloader:558 \
-W ignore::UserWarning:gymnasium.utils.env_checker:247 \
&& rm -rf tests/outputs outputs
end-to-end:
name: End-to-end
runs-on: ubuntu-latest
env:
MUJOCO_GL: egl
steps:
- uses: actions/checkout@v4
- name: Save cached Poetry installation
if: |
steps.restore-poetry-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-poetry-cache
uses: actions/cache/save@v3
with:
lfs: true # Ensure LFS files are pulled
persist-credentials: false
path: ~/.local
key: poetry-${{ env.POETRY_VERSION }}
- name: Install apt dependencies
# portaudio19-dev is needed to install pyaudio
run: |
sudo apt-get update && \
sudo apt-get install -y libegl1-mesa-dev ffmpeg portaudio19-dev
- name: Configure Poetry
run: poetry config virtualenvs.in-project true
- name: Install uv and python
uses: astral-sh/setup-uv@v5
#----------------------------------------------
# install dependencies
#----------------------------------------------
# TODO(aliberts): move to gpu runners
- name: Select cpu dependencies # HACK
run: cp -t . .github/poetry/cpu/pyproject.toml .github/poetry/cpu/poetry.lock
- name: Load cached venv
id: restore-dependencies-cache
uses: actions/cache/restore@v3
with:
enable-cache: true
version: ${{ env.UV_VERSION }}
python-version: "3.10"
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
- name: Install lerobot (all extras)
- name: Install dependencies
if: steps.restore-dependencies-cache.outputs.cache-hit != 'true'
env:
TMPDIR: ~/tmp
TEMP: ~/tmp
TMP: ~/tmp
run: |
uv venv
uv sync --all-extras
mkdir ~/tmp
poetry install --no-interaction --no-root --without dev --all-extras
- name: venv
run: |
echo "PYTHON_PATH=${{ github.workspace }}/.venv/bin/python" >> $GITHUB_ENV
- name: Save cached venv
if: |
steps.restore-dependencies-cache.outputs.cache-hit != 'true' &&
github.ref_name == 'main'
id: save-dependencies-cache
uses: actions/cache/save@v3
with:
path: .venv
key: venv-${{ steps.setup-python.outputs.python-version }}-${{ env.POETRY_VERSION }}-${{ hashFiles('**/poetry.lock') }}
- name: Test end-to-end
- name: Install libegl1-mesa-dev (to use MUJOCO_GL=egl)
run: sudo apt-get update && sudo apt-get install -y libegl1-mesa-dev
#----------------------------------------------
# install project
#----------------------------------------------
- name: Install project
run: poetry install --no-interaction --without dev --all-extras
#----------------------------------------------
# run tests & coverage
#----------------------------------------------
- name: Run tests
env:
LEROBOT_TESTS_DEVICE: cpu
run: |
make test-end-to-end \
&& rm -rf outputs
source .venv/bin/activate
pytest --cov=./lerobot --cov-report=xml tests
# TODO(aliberts): Link with HF Codecov account
# - name: Upload coverage reports to Codecov with GitHub Action
# uses: codecov/codecov-action@v4
# with:
# files: ./coverage.xml
# verbose: true
#----------------------------------------------
# run end-to-end tests
#----------------------------------------------
- name: Test train ACT on ALOHA end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=act \
env=aloha \
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
device=cpu \
save_model=true \
save_freq=2 \
horizon=20 \
policy.batch_size=2 \
hydra.run.dir=tests/outputs/act/
- name: Test eval ACT on ALOHA end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/act/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/act/models/2.pt
# TODO(aliberts): This takes ~2mn to run, needs to be improved
# - name: Test eval ACT on ALOHA end-to-end (policy is None)
# run: |
# source .venv/bin/activate
# python lerobot/scripts/eval.py \
# --config lerobot/configs/default.yaml \
# policy=act \
# env=aloha \
# eval_episodes=1 \
# device=cpu
- name: Test train Diffusion on PushT end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=diffusion \
env=pusht \
wandb.enable=False \
offline_steps=2 \
online_steps=0 \
device=cpu \
save_model=true \
save_freq=2 \
hydra.run.dir=tests/outputs/diffusion/
- name: Test eval Diffusion on PushT end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/diffusion/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/diffusion/models/2.pt
- name: Test eval Diffusion on PushT end-to-end (policy is None)
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
policy=diffusion \
env=pusht \
eval_episodes=1 \
device=cpu
- name: Test train TDMPC on Simxarm end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/train.py \
policy=tdmpc \
env=simxarm \
wandb.enable=False \
offline_steps=1 \
online_steps=1 \
device=cpu \
save_model=true \
save_freq=2 \
hydra.run.dir=tests/outputs/tdmpc/
- name: Test eval TDMPC on Simxarm end-to-end
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config tests/outputs/tdmpc/.hydra/config.yaml \
eval_episodes=1 \
env.episode_length=8 \
device=cpu \
policy.pretrained_model_path=tests/outputs/tdmpc/models/2.pt
- name: Test eval TDPMC on Simxarm end-to-end (policy is None)
run: |
source .venv/bin/activate
python lerobot/scripts/eval.py \
--config lerobot/configs/default.yaml \
policy=tdmpc \
env=simxarm \
eval_episodes=1 \
device=cpu

View File

@@ -1,35 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
on:
push:
name: Secret Leaks
permissions: {}
jobs:
trufflehog:
runs-on: ubuntu-latest
steps:
- name: Checkout code
uses: actions/checkout@v4
with:
fetch-depth: 0
persist-credentials: false
- name: Secret Scanning
uses: trufflesecurity/trufflehog@main
with:
extra_args: --only-verified

57
.gitignore vendored
View File

@@ -1,39 +1,16 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# Logging
logs
tmp
wandb
# Data
data
outputs
# Apple
.DS_Store
# VS Code
.vscode
rl
# HPC
nautilus/*.yaml
*.key
# Slurm
sbatch*.sh
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
@@ -63,10 +40,6 @@ share/python-wheels/
*.egg
MANIFEST
# uv/poetry lock files
poetry.lock
uv.lock
# PyInstaller
# Usually these files are written by a python script from a template
# before PyInstaller builds the exe, so as to inject date/other infos into it.
@@ -84,6 +57,7 @@ htmlcov/
.nox/
.coverage
.coverage.*
.cache
nosetests.xml
coverage.xml
*.cover
@@ -91,11 +65,6 @@ coverage.xml
.hypothesis/
.pytest_cache/
# Ignore .cache except calibration
.cache/*
!.cache/calibration/
!.cache/calibration/**
# Translations
*.mo
*.pot
@@ -117,7 +86,6 @@ instance/
docs/_build/
# PyBuilder
.pybuilder/
target/
# Jupyter Notebook
@@ -130,6 +98,13 @@ ipython_config.py
# pyenv
.python-version
# pipenv
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
# However, in case of collaboration, if having platform-specific dependencies or dependencies
# having no cross-platform support, pipenv may install dependencies that don't work, or not
# install all needed dependencies.
#Pipfile.lock
# PEP 582; used by e.g. github.com/David-OConnor/pyflow
__pypackages__/
@@ -140,14 +115,6 @@ celerybeat.pid
# SageMath parsed files
*.sage.py
# Environments
.env
.venv
env/
venv/
env.bak/
venv.bak/
# Spyder project settings
.spyderproject
.spyproject
@@ -165,9 +132,3 @@ dmypy.json
# Pyre type checker
.pyre/
# pytype static type analyzer
.pytype/
# Cython debug symbols
cython_debug/

View File

@@ -1,31 +1,9 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
exclude: ^(tests/data)
exclude: ^(data/|tests/)
default_language_version:
python: python3.10
repos:
##### Meta #####
- repo: meta
hooks:
- id: check-useless-excludes
- id: check-hooks-apply
##### Style / Misc. #####
- repo: https://github.com/pre-commit/pre-commit-hooks
rev: v5.0.0
rev: v4.5.0
hooks:
- id: check-added-large-files
- id: debug-statements
@@ -35,40 +13,21 @@ repos:
- id: check-toml
- id: end-of-file-fixer
- id: trailing-whitespace
- repo: https://github.com/crate-ci/typos
rev: v1.30.2
hooks:
- id: typos
args: [--force-exclude]
- repo: https://github.com/asottile/pyupgrade
rev: v3.19.1
rev: v3.15.2
hooks:
- id: pyupgrade
- repo: https://github.com/astral-sh/ruff-pre-commit
rev: v0.9.10
rev: v0.3.4
hooks:
- id: ruff
args: [--fix]
- id: ruff-format
##### Security #####
- repo: https://github.com/gitleaks/gitleaks
rev: v8.24.0
- repo: https://github.com/python-poetry/poetry
rev: 1.8.0
hooks:
- id: gitleaks
- repo: https://github.com/woodruffw/zizmor-pre-commit
rev: v1.4.1
hooks:
- id: zizmor
- repo: https://github.com/PyCQA/bandit
rev: 1.8.3
hooks:
- id: bandit
args: ["-c", "pyproject.toml"]
additional_dependencies: ["bandit[toml]"]
- id: poetry-check
- id: poetry-lock
args:
- "--check"
- "--no-update"

View File

@@ -1,133 +0,0 @@
# Contributor Covenant Code of Conduct
## Our Pledge
We as members, contributors, and leaders pledge to make participation in our
community a harassment-free experience for everyone, regardless of age, body
size, visible or invisible disability, ethnicity, sex characteristics, gender
identity and expression, level of experience, education, socio-economic status,
nationality, personal appearance, race, caste, color, religion, or sexual
identity and orientation.
We pledge to act and interact in ways that contribute to an open, welcoming,
diverse, inclusive, and healthy community.
## Our Standards
Examples of behavior that contributes to a positive environment for our
community include:
* Demonstrating empathy and kindness toward other people
* Being respectful of differing opinions, viewpoints, and experiences
* Giving and gracefully accepting constructive feedback
* Accepting responsibility and apologizing to those affected by our mistakes,
and learning from the experience
* Focusing on what is best not just for us as individuals, but for the overall
community
Examples of unacceptable behavior include:
* The use of sexualized language or imagery, and sexual attention or advances of
any kind
* Trolling, insulting or derogatory comments, and personal or political attacks
* Public or private harassment
* Publishing others' private information, such as a physical or email address,
without their explicit permission
* Other conduct which could reasonably be considered inappropriate in a
professional setting
## Enforcement Responsibilities
Community leaders are responsible for clarifying and enforcing our standards of
acceptable behavior and will take appropriate and fair corrective action in
response to any behavior that they deem inappropriate, threatening, offensive,
or harmful.
Community leaders have the right and responsibility to remove, edit, or reject
comments, commits, code, wiki edits, issues, and other contributions that are
not aligned to this Code of Conduct, and will communicate reasons for moderation
decisions when appropriate.
## Scope
This Code of Conduct applies within all community spaces, and also applies when
an individual is officially representing the community in public spaces.
Examples of representing our community include using an official email address,
posting via an official social media account, or acting as an appointed
representative at an online or offline event.
## Enforcement
Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported to the community leaders responsible for enforcement at
[feedback@huggingface.co](mailto:feedback@huggingface.co).
All complaints will be reviewed and investigated promptly and fairly.
All community leaders are obligated to respect the privacy and security of the
reporter of any incident.
## Enforcement Guidelines
Community leaders will follow these Community Impact Guidelines in determining
the consequences for any action they deem in violation of this Code of Conduct:
### 1. Correction
**Community Impact**: Use of inappropriate language or other behavior deemed
unprofessional or unwelcome in the community.
**Consequence**: A private, written warning from community leaders, providing
clarity around the nature of the violation and an explanation of why the
behavior was inappropriate. A public apology may be requested.
### 2. Warning
**Community Impact**: A violation through a single incident or series of
actions.
**Consequence**: A warning with consequences for continued behavior. No
interaction with the people involved, including unsolicited interaction with
those enforcing the Code of Conduct, for a specified period of time. This
includes avoiding interactions in community spaces as well as external channels
like social media. Violating these terms may lead to a temporary or permanent
ban.
### 3. Temporary Ban
**Community Impact**: A serious violation of community standards, including
sustained inappropriate behavior.
**Consequence**: A temporary ban from any sort of interaction or public
communication with the community for a specified period of time. No public or
private interaction with the people involved, including unsolicited interaction
with those enforcing the Code of Conduct, is allowed during this period.
Violating these terms may lead to a permanent ban.
### 4. Permanent Ban
**Community Impact**: Demonstrating a pattern of violation of community
standards, including sustained inappropriate behavior, harassment of an
individual, or aggression toward or disparagement of classes of individuals.
**Consequence**: A permanent ban from any sort of public interaction within the
community.
## Attribution
This Code of Conduct is adapted from the [Contributor Covenant][homepage],
version 2.1, available at
[https://www.contributor-covenant.org/version/2/1/code_of_conduct.html][v2.1].
Community Impact Guidelines were inspired by
[Mozilla's code of conduct enforcement ladder][Mozilla CoC].
For answers to common questions about this code of conduct, see the FAQ at
[https://www.contributor-covenant.org/faq][FAQ]. Translations are available at
[https://www.contributor-covenant.org/translations][translations].
[homepage]: https://www.contributor-covenant.org
[v2.1]: https://www.contributor-covenant.org/version/2/1/code_of_conduct.html
[Mozilla CoC]: https://github.com/mozilla/diversity
[FAQ]: https://www.contributor-covenant.org/faq
[translations]: https://www.contributor-covenant.org/translations

View File

@@ -1,308 +0,0 @@
# How to contribute to 🤗 LeRobot?
Everyone is welcome to contribute, and we value everybody's contribution. Code
is thus not the only way to help the community. Answering questions, helping
others, reaching out and improving the documentations are immensely valuable to
the community.
It also helps us if you spread the word: reference the library from blog posts
on the awesome projects it made possible, shout out on Twitter when it has
helped you, or simply ⭐️ the repo to say "thank you".
Whichever way you choose to contribute, please be mindful to respect our
[code of conduct](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md).
## You can contribute in so many ways!
Some of the ways you can contribute to 🤗 LeRobot:
* Fixing outstanding issues with the existing code.
* Implementing new models, datasets or simulation environments.
* Contributing to the examples or to the documentation.
* Submitting issues related to bugs or desired new features.
Following the guides below, feel free to open issues and PRs and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](mailto:remi.cadene@huggingface.co).
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
## Submitting a new issue or feature request
Do your best to follow these guidelines when submitting an issue or a feature
request. It will make it easier for us to come back to you quickly and with good
feedback.
### Did you find a bug?
The 🤗 LeRobot library is robust and reliable thanks to the users who notify us of
the problems they encounter. So thank you for reporting an issue.
First, we would really appreciate it if you could **make sure the bug was not
already reported** (use the search bar on Github under Issues).
Did not find it? :( So we can act quickly on it, please follow these steps:
* Include your **OS type and version**, the versions of **Python** and **PyTorch**.
* A short, self-contained, code snippet that allows us to reproduce the bug in
less than 30s.
* The full traceback if an exception is raised.
* Attach any other additional information, like screenshots, you think may help.
### Do you want a new feature?
A good feature request addresses the following points:
1. Motivation first:
* Is it related to a problem/frustration with the library? If so, please explain
why. Providing a code snippet that demonstrates the problem is best.
* Is it related to something you would need for a project? We'd love to hear
about it!
* Is it something you worked on and think could benefit the community?
Awesome! Tell us what problem it solved for you.
2. Write a *paragraph* describing the feature.
3. Provide a **code snippet** that demonstrates its future use.
4. In case this is related to a paper, please attach a link.
5. Attach any additional information (drawings, screenshots, etc.) you think may help.
If your issue is well written we're already 80% of the way there by the time you
post it.
## Adding new policies, datasets or environments
Look at our implementations for [datasets](./lerobot/common/datasets/), [policies](./lerobot/common/policies/),
environments ([aloha](https://github.com/huggingface/gym-aloha),
[xarm](https://github.com/huggingface/gym-xarm),
[pusht](https://github.com/huggingface/gym-pusht))
and follow the same api design.
When implementing a new dataset loadable with LeRobotDataset follow these steps:
- Update `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new environment (e.g. `gym_aloha`), follow these steps:
- Update `available_tasks_per_env` and `available_datasets_per_env` in `lerobot/__init__.py`
When implementing a new policy class (e.g. `DiffusionPolicy`) follow these steps:
- Update `available_policies` and `available_policies_per_env`, in `lerobot/__init__.py`
- Set the required `name` class attribute.
- Update variables in `tests/test_available.py` by importing your new Policy class
## Submitting a pull request (PR)
Before writing code, we strongly advise you to search through the existing PRs or
issues to make sure that nobody is already working on the same thing. If you are
unsure, it is always a good idea to open an issue to get some feedback.
You will need basic `git` proficiency to be able to contribute to
🤗 LeRobot. `git` is not the easiest tool to use but it has the greatest
manual. Type `git --help` in a shell and enjoy. If you prefer books, [Pro
Git](https://git-scm.com/book/en/v2) is a very good reference.
Follow these steps to start contributing:
1. Fork the [repository](https://github.com/huggingface/lerobot) by
clicking on the 'Fork' button on the repository's page. This creates a copy of the code
under your GitHub user account.
2. Clone your fork to your local disk, and add the base repository as a remote. The following command
assumes you have your public SSH key uploaded to GitHub. See the following guide for more
[information](https://docs.github.com/en/repositories/creating-and-managing-repositories/cloning-a-repository).
```bash
git clone git@github.com:<your Github handle>/lerobot.git
cd lerobot
git remote add upstream https://github.com/huggingface/lerobot.git
```
3. Create a new branch to hold your development changes, and do this for every new PR you work on.
Start by synchronizing your `main` branch with the `upstream/main` branch (more details in the [GitHub Docs](https://docs.github.com/en/github/collaborating-with-issues-and-pull-requests/syncing-a-fork)):
```bash
git checkout main
git fetch upstream
git rebase upstream/main
```
Once your `main` branch is synchronized, create a new branch from it:
```bash
git checkout -b a-descriptive-name-for-my-changes
```
🚨 **Do not** work on the `main` branch.
4. for development, we advise to use a tool like `poetry` or `uv` instead of just `pip` to easily track our dependencies.
Follow the instructions to [install poetry](https://python-poetry.org/docs/#installation) (use a version >=2.1.0) or to [install uv](https://docs.astral.sh/uv/getting-started/installation/#installation-methods) if you don't have one of them already.
Set up a development environment with conda or miniconda:
```bash
conda create -y -n lerobot-dev python=3.10 && conda activate lerobot-dev
```
If you're using `uv`, it can manage python versions so you can instead do:
```bash
uv venv --python 3.10 && source .venv/bin/activate
```
To develop on 🤗 LeRobot, you will at least need to install the `dev` and `test` extras dependencies along with the core library:
using `poetry`
```bash
poetry sync --extras "dev test"
```
using `uv`
```bash
uv sync --extra dev --extra test
```
You can also install the project with all its dependencies (including environments):
using `poetry`
```bash
poetry sync --all-extras
```
using `uv`
```bash
uv sync --all-extras
```
> **Note:** If you don't install simulation environments with `--all-extras`, the tests that require them will be skipped when running the pytest suite locally. However, they *will* be tested in the CI. In general, we advise you to install everything and test locally before pushing.
Whichever command you chose to install the project (e.g. `poetry sync --all-extras`), you should run it again when pulling code with an updated version of `pyproject.toml` and `poetry.lock` in order to synchronize your virtual environment with the new dependencies.
The equivalent of `pip install some-package`, would just be:
using `poetry`
```bash
poetry add some-package
```
using `uv`
```bash
uv add some-package
```
When making changes to the poetry sections of the `pyproject.toml`, you should run the following command to lock dependencies.
using `poetry`
```bash
poetry lock
```
using `uv`
```bash
uv lock
```
5. Develop the features on your branch.
As you work on the features, you should make sure that the test suite
passes. You should run the tests impacted by your changes like this (see
below an explanation regarding the environment variable):
```bash
pytest tests/<TEST_TO_RUN>.py
```
6. Follow our style.
`lerobot` relies on `ruff` to format its source code
consistently. Set up [`pre-commit`](https://pre-commit.com/) to run these checks
automatically as Git commit hooks.
Install `pre-commit` hooks:
```bash
pre-commit install
```
You can run these hooks whenever you need on staged files with:
```bash
pre-commit
```
Once you're happy with your changes, add changed files using `git add` and
make a commit with `git commit` to record your changes locally:
```bash
git add modified_file.py
git commit
```
Note, if you already committed some changes that have a wrong formatting, you can use:
```bash
pre-commit run --all-files
```
Please write [good commit messages](https://chris.beams.io/posts/git-commit/).
It is a good idea to sync your copy of the code with the original
repository regularly. This way you can quickly account for changes:
```bash
git fetch upstream
git rebase upstream/main
```
Push the changes to your account using:
```bash
git push -u origin a-descriptive-name-for-my-changes
```
6. Once you are satisfied (**and the checklist below is happy too**), go to the
webpage of your fork on GitHub. Click on 'Pull request' to send your changes
to the project maintainers for review.
7. It's ok if maintainers ask you for changes. It happens to core contributors
too! So everyone can see the changes in the Pull request, work in your local
branch and push the changes to your fork. They will automatically appear in
the pull request.
### Checklist
1. The title of your pull request should be a summary of its contribution;
2. If your pull request addresses an issue, please mention the issue number in
the pull request description to make sure they are linked (and people
consulting the issue know you are working on it);
3. To indicate a work in progress please prefix the title with `[WIP]`, or preferably mark
the PR as a draft PR. These are useful to avoid duplicated work, and to differentiate
it from PRs ready to be merged;
4. Make sure existing tests pass;
<!-- 5. Add high-coverage tests. No quality testing = no merge.
See an example of a good PR here: https://github.com/huggingface/lerobot/pull/ -->
### Tests
An extensive test suite is included to test the library behavior and several examples. Library tests can be found in the [tests folder](https://github.com/huggingface/lerobot/tree/main/tests).
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
On Mac:
```bash
brew install git-lfs
git lfs install
```
On Ubuntu:
```bash
sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/data](tests/data)
```bash
git lfs pull
```
We use `pytest` in order to run the tests. From the root of the
repository, here's how to run tests with `pytest` for the library:
```bash
python -m pytest -sv ./tests
```
You can specify a smaller set of tests in order to test only the feature
you're working on.

142
Makefile
View File

@@ -1,142 +0,0 @@
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
.PHONY: tests
PYTHON_PATH := $(shell which python)
# If uv is installed and a virtual environment exists, use it
UV_CHECK := $(shell command -v uv)
ifneq ($(UV_CHECK),)
PYTHON_PATH := $(shell .venv/bin/python)
endif
export PATH := $(dir $(PYTHON_PATH)):$(PATH)
DEVICE ?= cpu
build-cpu:
docker build -t lerobot:latest -f docker/lerobot-cpu/Dockerfile .
build-gpu:
docker build -t lerobot:latest -f docker/lerobot-gpu/Dockerfile .
test-end-to-end:
${MAKE} DEVICE=$(DEVICE) test-act-ete-train
${MAKE} DEVICE=$(DEVICE) test-act-ete-train-resume
${MAKE} DEVICE=$(DEVICE) test-act-ete-eval
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-train
${MAKE} DEVICE=$(DEVICE) test-diffusion-ete-eval
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-train
${MAKE} DEVICE=$(DEVICE) test-tdmpc-ete-eval
test-act-ete-train:
python lerobot/scripts/train.py \
--policy.type=act \
--policy.dim_model=64 \
--policy.n_action_steps=20 \
--policy.chunk_size=20 \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--dataset.repo_id=lerobot/aloha_sim_transfer_cube_human \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=4 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_freq=2 \
--save_checkpoint=true \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/act/
test-act-ete-train-resume:
python lerobot/scripts/train.py \
--config_path=tests/outputs/act/checkpoints/000002/pretrained_model/train_config.json \
--resume=true
test-act-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/act/checkpoints/000004/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=aloha \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
test-diffusion-ete-train:
python lerobot/scripts/train.py \
--policy.type=diffusion \
--policy.down_dims='[64,128,256]' \
--policy.diffusion_step_embed_dim=32 \
--policy.num_inference_steps=10 \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--dataset.repo_id=lerobot/pusht \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=2 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_checkpoint=true \
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/diffusion/
test-diffusion-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/diffusion/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=pusht \
--env.episode_length=5 \
--eval.n_episodes=1 \
--eval.batch_size=1
test-tdmpc-ete-train:
python lerobot/scripts/train.py \
--policy.type=tdmpc \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.task=XarmLift-v0 \
--env.episode_length=5 \
--dataset.repo_id=lerobot/xarm_lift_medium \
--dataset.image_transforms.enable=true \
--dataset.episodes="[0]" \
--batch_size=2 \
--steps=2 \
--eval_freq=2 \
--eval.n_episodes=1 \
--eval.batch_size=1 \
--save_checkpoint=true \
--save_freq=2 \
--log_freq=1 \
--wandb.enable=false \
--output_dir=tests/outputs/tdmpc/
test-tdmpc-ete-eval:
python lerobot/scripts/eval.py \
--policy.path=tests/outputs/tdmpc/checkpoints/000002/pretrained_model \
--policy.device=$(DEVICE) \
--env.type=xarm \
--env.episode_length=5 \
--env.task=XarmLift-v0 \
--eval.n_episodes=1 \
--eval.batch_size=1

497
README.md
View File

@@ -10,63 +10,39 @@
<div align="center">
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/nightly-tests.yml?query=branch%3Amain)
[![Tests](https://github.com/huggingface/lerobot/actions/workflows/test.yml/badge.svg?branch=main)](https://github.com/huggingface/lerobot/actions/workflows/test.yml?query=branch%3Amain)
[![Coverage](https://codecov.io/gh/huggingface/lerobot/branch/main/graph/badge.svg?token=TODO)](https://codecov.io/gh/huggingface/lerobot)
[![Python versions](https://img.shields.io/pypi/pyversions/lerobot)](https://www.python.org/downloads/)
[![License](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/huggingface/lerobot/blob/main/LICENSE)
[![Status](https://img.shields.io/pypi/status/lerobot)](https://pypi.org/project/lerobot/)
[![Version](https://img.shields.io/pypi/v/lerobot)](https://pypi.org/project/lerobot/)
[![Examples](https://img.shields.io/badge/Examples-green.svg)](https://github.com/huggingface/lerobot/tree/main/examples)
[![Contributor Covenant](https://img.shields.io/badge/Contributor%20Covenant-v2.1%20adopted-ff69b4.svg)](https://github.com/huggingface/lerobot/blob/main/CODE_OF_CONDUCT.md)
[![Discord](https://dcbadge.vercel.app/api/server/C5P34WJ68S?style=flat)](https://discord.gg/s3KuuzsPFb)
</div>
<h2 align="center">
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Build Your Own SO-100 Robot!</a></p>
</h2>
<div align="center">
<img src="media/so100/leader_follower.webp?raw=true" alt="SO-100 leader and follower arms" title="SO-100 leader and follower arms" width="50%">
<p><strong>Meet the SO-100 Just $110 per arm!</strong></p>
<p>Train it in minutes with a few simple moves on your laptop.</p>
<p>Then sit back and watch your creation act autonomously! 🤯</p>
<p><a href="https://github.com/huggingface/lerobot/blob/main/examples/10_use_so100.md">
Get the full SO-100 tutorial here.</a></p>
<p>Want to take it to the next level? Make your SO-100 mobile by building LeKiwi!</p>
<p>Check out the <a href="https://github.com/huggingface/lerobot/blob/main/examples/11_use_lekiwi.md">LeKiwi tutorial</a> and bring your robot to life on wheels.</p>
<img src="media/lekiwi/kiwi.webp?raw=true" alt="LeKiwi mobile robot" title="LeKiwi mobile robot" width="50%">
</div>
<br/>
<h3 align="center">
<p>LeRobot: State-of-the-art AI for real-world robotics</p>
<p>State-of-the-art Machine Learning for real-world robotics</p>
</h3>
---
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier to entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot aims to provide models, datasets, and tools for real-world robotics in PyTorch. The goal is to lower the barrier for entry to robotics so that everyone can contribute and benefit from sharing datasets and pretrained models.
🤗 LeRobot contains state-of-the-art approaches that have been shown to transfer to the real-world with a focus on imitation learning and reinforcement learning.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulation environments to get started without assembling a robot. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
🤗 LeRobot already provides a set of pretrained models, datasets with human collected demonstrations, and simulated environments so that everyone can get started. In the coming weeks, the plan is to add more and more support for real-world robotics on the most affordable and capable robots out there.
🤗 LeRobot hosts pretrained models and datasets on this Hugging Face community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
🤗 LeRobot hosts pretrained models and datasets on this HuggingFace community page: [huggingface.co/lerobot](https://huggingface.co/lerobot)
#### Examples of pretrained models on simulation environments
#### Examples of pretrained models and environments
<table>
<tr>
<td><img src="media/gym/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="media/gym/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="media/gym/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
<td><img src="http://remicadene.com/assets/gif/aloha_act.gif" width="100%" alt="ACT policy on ALOHA env"/></td>
<td><img src="http://remicadene.com/assets/gif/simxarm_tdmpc.gif" width="100%" alt="TDMPC policy on SimXArm env"/></td>
<td><img src="http://remicadene.com/assets/gif/pusht_diffusion.gif" width="100%" alt="Diffusion policy on PushT env"/></td>
</tr>
<tr>
<td align="center">ACT policy on ALOHA env</td>
@@ -77,12 +53,10 @@
### Acknowledgment
- Thanks to Tony Zhao, Zipeng Fu and colleagues for open sourcing ACT policy, ALOHA environments and datasets. Ours are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha) and [Mobile ALOHA](https://mobile-aloha.github.io).
- Thanks to Cheng Chi, Zhenjia Xu and colleagues for open sourcing Diffusion policy, Pusht environment and datasets, as well as UMI datasets. Ours are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu) and [UMI Gripper](https://umi-gripper.github.io).
- Thanks to Nicklas Hansen, Yunhai Feng and colleagues for open sourcing TDMPC policy, Simxarm environments and datasets. Ours are adapted from [TDMPC](https://github.com/nicklashansen/tdmpc) and [FOWM](https://www.yunhaifeng.com/FOWM).
- Thanks to Antonio Loquercio and Ashish Kumar for their early support.
- Thanks to [Seungjae (Jay) Lee](https://sjlee.cc/), [Mahi Shafiullah](https://mahis.life/) and colleagues for open sourcing [VQ-BeT](https://sjlee.cc/vq-bet/) policy and helping us adapt the codebase to our repository. The policy is adapted from [VQ-BeT repo](https://github.com/jayLEE0301/vq_bet_official).
- ACT policy and ALOHA environment are adapted from [ALOHA](https://tonyzhaozh.github.io/aloha/)
- Diffusion policy and Pusht environment are adapted from [Diffusion Policy](https://diffusion-policy.cs.columbia.edu/)
- TDMPC policy and Simxarm environment are adapted from [FOWM](https://www.yunhaifeng.com/FOWM/)
- Abstractions and utilities for Reinforcement Learning come from [TorchRL](https://github.com/pytorch/rl)
## Installation
@@ -98,213 +72,298 @@ conda create -y -n lerobot python=3.10
conda activate lerobot
```
Install 🤗 LeRobot:
Then, install 🤗 LeRobot:
```bash
pip install -e .
python -m pip install .
```
> **NOTE:** Depending on your platform, If you encounter any build errors during this step
you may need to install `cmake` and `build-essential` for building some of our dependencies.
On linux: `sudo apt-get install cmake build-essential`
For simulations, 🤗 LeRobot comes with gymnasium environments that can be installed as extras:
- [aloha](https://github.com/huggingface/gym-aloha)
- [xarm](https://github.com/huggingface/gym-xarm)
- [pusht](https://github.com/huggingface/gym-pusht)
For instance, to install 🤗 LeRobot with aloha and pusht, use:
```bash
pip install -e ".[aloha, pusht]"
```
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiment tracking, log in with
To use [Weights and Biases](https://docs.wandb.ai/quickstart) for experiments tracking, log in with
```bash
wandb login
```
(note: you will also need to enable WandB in the configuration. See below.)
## Walkthrough
```
.
├── examples # contains demonstration examples, start here to learn about LeRobot
| └── advanced # contains even more examples for those who have mastered the basics
├── lerobot
| ├── configs # contains config classes with all options that you can override in the command line
| ├── configs # contains hydra yaml files with all options that you can override in the command line
| | ├── default.yaml # selected by default, it loads pusht environment and diffusion policy
| | ├── env # various sim environments and their datasets: aloha.yaml, pusht.yaml, simxarm.yaml
| | └── policy # various policies: act.yaml, diffusion.yaml, tdmpc.yaml
| ├── common # contains classes and utilities
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, xarm
| | ├── envs # various sim environments: aloha, pusht, xarm
| | ── policies # various policies: act, diffusion, tdmpc
| | ├── robot_devices # various real devices: dynamixel motors, opencv cameras, koch robots
| | ── utils # various utilities
| └── scripts # contains functions to execute via command line
| ── eval.py # load policy and evaluate it on an environment
| ├── train.py # train a policy via imitation learning and/or reinforcement learning
| ├── control_robot.py # teleoperate a real robot, record data, run a policy
| ├── push_dataset_to_hub.py # convert your dataset into LeRobot dataset format and upload it to the Hugging Face hub
| └── visualize_dataset.py # load a dataset and render its demonstrations
| | ├── datasets # various datasets of human demonstrations: aloha, pusht, simxarm
| | ├── envs # various sim environments: aloha, pusht, simxarm
| | ── policies # various policies: act, diffusion, tdmpc
| └── scripts # contains functions to execute via command line
| ── visualize_dataset.py # load a dataset and render its demonstrations
| ├── eval.py # load policy and evaluate it on an environment
| ── train.py # train a policy via imitation learning and/or reinforcement learning
├── outputs # contains results of scripts execution: logs, videos, model checkpoints
├── .github
| └── workflows
| └── test.yml # defines install settings for continuous integration and specifies end-to-end tests
└── tests # contains pytest utilities for continuous integration
```
### Visualize datasets
Check out [example 1](./examples/1_load_lerobot_dataset.py) that illustrates how to use our dataset class which automatically downloads data from the Hugging Face hub.
You can import our dataset class, download the data from the HuggingFace hub and use our rendering utilities:
```python
""" Copy pasted from `examples/1_visualize_dataset.py` """
import lerobot
from lerobot.common.datasets.aloha import AlohaDataset
from torchrl.data.replay_buffers import SamplerWithoutReplacement
from lerobot.scripts.visualize_dataset import render_dataset
You can also locally visualize episodes from a dataset on the hub by executing our script from the command line:
print(lerobot.available_datasets)
# >>> ['aloha_sim_insertion_human', 'aloha_sim_insertion_scripted', 'aloha_sim_transfer_cube_human', 'aloha_sim_transfer_cube_scripted', 'pusht', 'xarm_lift_medium']
# we use this sampler to sample 1 frame after the other
sampler = SamplerWithoutReplacement(shuffle=False)
dataset = AlohaDataset("aloha_sim_transfer_cube_human", sampler=sampler)
video_paths = render_dataset(
dataset,
out_dir="outputs/visualize_dataset/example",
max_num_samples=300,
fps=50,
)
print(video_paths)
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
```
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--episode-index 0
env=aloha \
task=sim_sim_transfer_cube_human \
hydra.run.dir=outputs/visualize_dataset/example
# >>> ['outputs/visualize_dataset/example/episode_0.mp4']
```
or from a dataset in a local folder with the `root` option and the `--local-files-only` (in the following case the dataset will be searched for in `./my_local_data_dir/lerobot/pusht`)
```bash
python lerobot/scripts/visualize_dataset.py \
--repo-id lerobot/pusht \
--root ./my_local_data_dir \
--local-files-only 1 \
--episode-index 0
```
It will open `rerun.io` and display the camera streams, robot states and actions, like this:
https://github-production-user-asset-6210df.s3.amazonaws.com/4681518/328035972-fd46b787-b532-47e2-bb6f-fd536a55a7ed.mov?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAVCODYLSA53PQK4ZA%2F20240505%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20240505T172924Z&X-Amz-Expires=300&X-Amz-Signature=d680b26c532eeaf80740f08af3320d22ad0b8a4e4da1bcc4f33142c15b509eda&X-Amz-SignedHeaders=host&actor_id=24889239&key_id=0&repo_id=748713144
Our script can also visualize datasets stored on a distant server. See `python lerobot/scripts/visualize_dataset.py --help` for more instructions.
### The `LeRobotDataset` format
A dataset in `LeRobotDataset` format is very simple to use. It can be loaded from a repository on the Hugging Face hub or a local folder simply with e.g. `dataset = LeRobotDataset("lerobot/aloha_static_coffee")` and can be indexed into like any Hugging Face and PyTorch dataset. For instance `dataset[0]` will retrieve a single temporal frame from the dataset containing observation(s) and an action as PyTorch tensors ready to be fed to a model.
A specificity of `LeRobotDataset` is that, rather than retrieving a single frame by its index, we can retrieve several frames based on their temporal relationship with the indexed frame, by setting `delta_timestamps` to a list of relative times with respect to the indexed frame. For example, with `delta_timestamps = {"observation.image": [-1, -0.5, -0.2, 0]}` one can retrieve, for a given index, 4 frames: 3 "previous" frames 1 second, 0.5 seconds, and 0.2 seconds before the indexed frame, and the indexed frame itself (corresponding to the 0 entry). See example [1_load_lerobot_dataset.py](examples/1_load_lerobot_dataset.py) for more details on `delta_timestamps`.
Under the hood, the `LeRobotDataset` format makes use of several ways to serialize data which can be useful to understand if you plan to work more closely with this format. We tried to make a flexible yet simple dataset format that would cover most type of features and specificities present in reinforcement learning and robotics, in simulation and in real-world, with a focus on cameras and robot states but easily extended to other types of sensory inputs as long as they can be represented by a tensor.
Here are the important details and internal structure organization of a typical `LeRobotDataset` instantiated with `dataset = LeRobotDataset("lerobot/aloha_static_coffee")`. The exact features will change from dataset to dataset but not the main aspects:
```
dataset attributes:
├ hf_dataset: a Hugging Face dataset (backed by Arrow/parquet). Typical features example:
│ ├ observation.images.cam_high (VideoFrame):
│ │ VideoFrame = {'path': path to a mp4 video, 'timestamp' (float32): timestamp in the video}
│ ├ observation.state (list of float32): position of an arm joints (for instance)
│ ... (more observations)
│ ├ action (list of float32): goal position of an arm joints (for instance)
│ ├ episode_index (int64): index of the episode for this sample
│ ├ frame_index (int64): index of the frame for this sample in the episode ; starts at 0 for each episode
│ ├ timestamp (float32): timestamp in the episode
│ ├ next.done (bool): indicates the end of en episode ; True for the last frame in each episode
│ └ index (int64): general index in the whole dataset
├ episode_data_index: contains 2 tensors with the start and end indices of each episode
│ ├ from (1D int64 tensor): first frame index for each episode — shape (num episodes,) starts with 0
│ └ to: (1D int64 tensor): last frame index for each episode — shape (num episodes,)
├ stats: a dictionary of statistics (max, mean, min, std) for each feature in the dataset, for instance
│ ├ observation.images.cam_high: {'max': tensor with same number of dimensions (e.g. `(c, 1, 1)` for images, `(c,)` for states), etc.}
│ ...
├ info: a dictionary of metadata on the dataset
│ ├ codebase_version (str): this is to keep track of the codebase version the dataset was created with
│ ├ fps (float): frame per second the dataset is recorded/synchronized to
│ ├ video (bool): indicates if frames are encoded in mp4 video files to save space or stored as png files
│ └ encoding (dict): if video, this documents the main options that were used with ffmpeg to encode the videos
├ videos_dir (Path): where the mp4 videos or png images are stored/accessed
└ camera_keys (list of string): the keys to access camera features in the item returned by the dataset (e.g. `["observation.images.cam_high", ...]`)
```
A `LeRobotDataset` is serialised using several widespread file formats for each of its parts, namely:
- hf_dataset stored using Hugging Face datasets library serialization to parquet
- videos are stored in mp4 format to save space
- metadata are stored in plain json/jsonl files
Dataset can be uploaded/downloaded from the HuggingFace hub seamlessly. To work on a local dataset, you can specify its location with the `root` argument if it's not in the default `~/.cache/huggingface/lerobot` location.
### Evaluate a pretrained policy
Check out [example 2](./examples/2_evaluate_pretrained_policy.py) that illustrates how to download a pretrained policy from Hugging Face hub, and run an evaluation on its corresponding environment.
We also provide a more capable script to parallelize the evaluation over multiple environments during the same rollout. Here is an example with a pretrained model hosted on [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht):
```bash
python lerobot/scripts/eval.py \
--policy.path=lerobot/diffusion_pusht \
--env.type=pusht \
--eval.batch_size=10 \
--eval.n_episodes=10 \
--policy.use_amp=false \
--policy.device=cuda
You can import our environment class, download pretrained policies from the HuggingFace hub, and use our rollout utilities with rendering:
```python
""" Copy pasted from `examples/2_evaluate_pretrained_policy.py`
# TODO
```
Note: After training your own policy, you can re-evaluate the checkpoints with:
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/eval.py --policy.path={OUTPUT_DIR}/checkpoints/last/pretrained_model
python lerobot/scripts/eval.py \
--hub-id lerobot/diffusion_policy_pusht_image \
eval_episodes=10 \
hydra.run.dir=outputs/eval/example_hub
```
After launching training of your own policy, you can also re-evaluate the checkpoints with:
```bash
python lerobot/scripts/eval.py \
--config PATH/TO/FOLDER/config.yaml \
policy.pretrained_model_path=PATH/TO/FOLDER/weights.pth \
eval_episodes=10 \
hydra.run.dir=outputs/eval/example_dir
```
See `python lerobot/scripts/eval.py --help` for more instructions.
### Train your own policy
Check out [example 3](./examples/3_train_policy.py) that illustrate how to train a model using our core library in python, and [example 4](./examples/4_train_policy_with_script.md) that shows how to use our training script from command line.
To use wandb for logging training and evaluation curves, make sure you've run `wandb login` as a one-time setup step. Then, when running the training command above, enable WandB in the configuration by adding `--wandb.enable=true`.
A link to the wandb logs for the run will also show up in yellow in your terminal. Here is an example of what they look like in your browser. Please also check [here](./examples/4_train_policy_with_script.md#typical-logs-and-metrics) for the explanation of some commonly used metrics in logs.
![](media/wandb.png)
Note: For efficiency, during training every checkpoint is evaluated on a low number of episodes. You may use `--eval.n_episodes=500` to evaluate on more episodes than the default. Or, after training, you may want to re-evaluate your best checkpoints on more episodes or change the evaluation settings. See `python lerobot/scripts/eval.py --help` for more instructions.
#### Reproduce state-of-the-art (SOTA)
We provide some pretrained policies on our [hub page](https://huggingface.co/lerobot) that can achieve state-of-the-art performances.
You can reproduce their training by loading the config from their run. Simply running:
```bash
python lerobot/scripts/train.py --config_path=lerobot/diffusion_pusht
You can import our dataset, environment, policy classes, and use our training utilities (if some data is missing, it will be automatically downloaded from HuggingFace hub):
```python
""" Copy pasted from `examples/3_train_policy.py`
# TODO
```
Or you can achieve the same result by executing our script from the command line:
```bash
python lerobot/scripts/train.py \
hydra.run.dir=outputs/train/example
```
You can easily train any policy on any environment:
```bash
python lerobot/scripts/train.py \
env=aloha \
task=sim_insertion \
dataset_id=aloha_sim_insertion_scripted \
policy=act \
hydra.run.dir=outputs/train/aloha_act
```
reproduces SOTA results for Diffusion Policy on the PushT task.
## Contribute
If you would like to contribute to 🤗 LeRobot, please check out our [contribution guide](https://github.com/huggingface/lerobot/blob/main/CONTRIBUTING.md).
Feel free to open issues and PRs, and to coordinate your efforts with the community on our [Discord Channel](https://discord.gg/VjFz58wn3R). For specific inquiries, reach out to [Remi Cadene](remi.cadene@huggingface.co).
<!-- ### Add a new dataset
### TODO
To add a dataset to the hub, you need to login using a write-access token, which can be generated from the [Hugging Face settings](https://huggingface.co/settings/tokens):
If you are not sure how to contribute or want to know the next features we working on, look on this project page: [LeRobot TODO](https://github.com/orgs/huggingface/projects/46)
### Follow our style
```bash
# install if needed
pre-commit install
# apply style and linter checks before git commit
pre-commit
```
### Add dependencies
Instead of using `pip` directly, we use `poetry` for development purposes to easily track our dependencies.
If you don't have it already, follow the [instructions](https://python-poetry.org/docs/#installation) to install it.
Install the project with:
```bash
poetry install
```
Then, the equivalent of `pip install some-package`, would just be:
```bash
poetry add some-package
```
**NOTE:** Currently, to ensure the CI works properly, any new package must also be added in the CPU-only environment dedicated to the CI. To do this, you should create a separate environment and add the new package there as well. For example:
```bash
# Add the new package to your main poetry env
poetry add some-package
# Add the same package to the CPU-only env dedicated to CI
conda create -y -n lerobot-ci python=3.10
conda activate lerobot-ci
cd .github/poetry/cpu
poetry add some-package
```
### Run tests locally
Install [git lfs](https://git-lfs.com/) to retrieve test artifacts (if you don't have it already).
On Mac:
```bash
brew install git-lfs
git lfs install
```
On Ubuntu:
```bash
sudo apt-get install git-lfs
git lfs install
```
Pull artifacts if they're not in [tests/data](tests/data)
```bash
git lfs pull
```
When adding a new dataset, mock it with
```bash
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
```
Run tests
```bash
DATA_DIR="tests/data" pytest -sx tests
```
### Add a new dataset
To add a dataset to the hub, first login and use a token generated from [huggingface settings](https://huggingface.co/settings/tokens) with write access:
```bash
huggingface-cli login --token ${HUGGINGFACE_TOKEN} --add-to-git-credential
```
Then point to your raw dataset folder (e.g. `data/aloha_static_pingpong_test_raw`), and push your dataset to the hub with:
Then you can upload it to the hub with:
```bash
python lerobot/scripts/push_dataset_to_hub.py \
--raw-dir data/aloha_static_pingpong_test_raw \
--out-dir data \
--repo-id lerobot/aloha_static_pingpong_test \
--raw-format aloha_hdf5
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.0
```
See `python lerobot/scripts/push_dataset_to_hub.py --help` for more instructions.
You will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.0",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
If your dataset format is not supported, implement your own in `lerobot/common/datasets/push_dataset_to_hub/${raw_format}_format.py` by copying examples like [pusht_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/pusht_zarr_format.py), [umi_zarr](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/umi_zarr_format.py), [aloha_hdf5](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/aloha_hdf5_format.py), or [xarm_pkl](https://github.com/huggingface/lerobot/blob/main/lerobot/common/datasets/push_dataset_to_hub/xarm_pkl_format.py). -->
For instance, for [lerobot/pusht](https://huggingface.co/datasets/lerobot/pusht), we used:
```bash
HF_USER=lerobot
DATASET=pusht
```
If you want to improve an existing dataset, you can download it locally with:
```bash
mkdir -p data/$DATASET
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli download ${HF_USER}/$DATASET \
--repo-type dataset \
--local-dir data/$DATASET \
--local-dir-use-symlinks=False \
--revision v1.0
```
Iterate on your code and dataset with:
```bash
DATA_DIR=data python train.py
```
Upload a new version (v2.0 or v1.1 if the changes are respectively more or less significant):
```bash
HF_HUB_ENABLE_HF_TRANSFER=1 huggingface-cli upload $HF_USER/$DATASET data/$DATASET \
--repo-type dataset \
--revision v1.1 \
--delete "*"
```
Then you will need to set the corresponding version as a default argument in your dataset class:
```python
version: str | None = "v1.1",
```
See: [`lerobot/common/datasets/pusht.py`](https://github.com/Cadene/lerobot/blob/main/lerobot/common/datasets/pusht.py)
Finally, you might want to mock the dataset if you need to update the unit tests as well:
```bash
python tests/scripts/mock_dataset.py --in-data-dir data/$DATASET --out-data-dir tests/data/$DATASET
```
### Add a pretrained policy
Once you have trained a policy you may upload it to the Hugging Face hub using a hub id that looks like `${hf_user}/${repo_name}` (e.g. [lerobot/diffusion_pusht](https://huggingface.co/lerobot/diffusion_pusht)).
Once you have trained a policy you may upload it to the HuggingFace hub.
You first need to find the checkpoint folder located inside your experiment directory (e.g. `outputs/train/2024-05-05/20-21-12_aloha_act_default/checkpoints/002500`). Within that there is a `pretrained_model` directory which should contain:
- `config.json`: A serialized version of the policy configuration (following the policy's dataclass config).
- `model.safetensors`: A set of `torch.nn.Module` parameters, saved in [Hugging Face Safetensors](https://huggingface.co/docs/safetensors/index) format.
- `train_config.json`: A consolidated configuration containing all parameter userd for training. The policy configuration should match `config.json` exactly. Thisis useful for anyone who wants to evaluate your policy or for reproducibility.
Firstly, make sure you have a model repository set up on the hub. The hub ID looks like HF_USER/REPO_NAME.
To upload these to the hub, run the following:
```bash
huggingface-cli upload ${hf_user}/${repo_name} path/to/pretrained_model
Secondly, assuming you have trained a policy, you need:
- `config.yaml` which you can get from the `.hydra` directory of your training output folder.
- `model.pt` which should be one of the saved models in the `models` directory of your training output folder (they won't be named `model.pt` but you will need to choose one).
- `stats.pth` which should point to the same file in the dataset directory (found in `data/{dataset_name}`).
To upload these to the hub, prepare a folder with the following structure (you can use symlinks rather than copying):
```
to_upload
├── config.yaml
├── model.pt
└── stats.pth
```
See [eval.py](https://github.com/huggingface/lerobot/blob/main/lerobot/scripts/eval.py) for an example of how other people may use your policy.
With the folder prepared, run the following with a desired revision ID.
```bash
huggingface-cli upload $HUB_ID to_upload --revision $REVISION_ID
```
If you want this to be the default revision also run the following (don't worry, it won't upload the files again; it will just adjust the file pointers):
```bash
huggingface-cli upload $HUB_ID to_upload
```
See `eval.py` for an example of how a user may use your policy.
### Improve your code with profiling
@@ -331,59 +390,9 @@ with profile(
# insert code to profile, potentially whole body of eval_policy function
```
## Citation
If you want, you can cite this work with:
```bibtex
@misc{cadene2024lerobot,
author = {Cadene, Remi and Alibert, Simon and Soare, Alexander and Gallouedec, Quentin and Zouitine, Adil and Wolf, Thomas},
title = {LeRobot: State-of-the-art Machine Learning for Real-World Robotics in Pytorch},
howpublished = "\url{https://github.com/huggingface/lerobot}",
year = {2024}
}
```bash
python lerobot/scripts/eval.py \
--config outputs/pusht/.hydra/config.yaml \
pretrained_model_path=outputs/pusht/model.pt \
eval_episodes=7
```
Additionally, if you are using any of the particular policy architecture, pretrained models, or datasets, it is recommended to cite the original authors of the work as they appear below:
- [Diffusion Policy](https://diffusion-policy.cs.columbia.edu)
```bibtex
@article{chi2024diffusionpolicy,
author = {Cheng Chi and Zhenjia Xu and Siyuan Feng and Eric Cousineau and Yilun Du and Benjamin Burchfiel and Russ Tedrake and Shuran Song},
title ={Diffusion Policy: Visuomotor Policy Learning via Action Diffusion},
journal = {The International Journal of Robotics Research},
year = {2024},
}
```
- [ACT or ALOHA](https://tonyzhaozh.github.io/aloha)
```bibtex
@article{zhao2023learning,
title={Learning fine-grained bimanual manipulation with low-cost hardware},
author={Zhao, Tony Z and Kumar, Vikash and Levine, Sergey and Finn, Chelsea},
journal={arXiv preprint arXiv:2304.13705},
year={2023}
}
```
- [TDMPC](https://www.nicklashansen.com/td-mpc/)
```bibtex
@inproceedings{Hansen2022tdmpc,
title={Temporal Difference Learning for Model Predictive Control},
author={Nicklas Hansen and Xiaolong Wang and Hao Su},
booktitle={ICML},
year={2022}
}
```
- [VQ-BeT](https://sjlee.cc/vq-bet/)
```bibtex
@article{lee2024behavior,
title={Behavior generation with latent actions},
author={Lee, Seungjae and Wang, Yibin and Etukuru, Haritheja and Kim, H Jin and Shafiullah, Nur Muhammad Mahi and Pinto, Lerrel},
journal={arXiv preprint arXiv:2403.03181},
year={2024}
}
```
## Star History
[![Star History Chart](https://api.star-history.com/svg?repos=huggingface/lerobot&type=Timeline)](https://star-history.com/#huggingface/lerobot&Timeline)

View File

@@ -1,271 +0,0 @@
# Video benchmark
## Questions
What is the optimal trade-off between:
- maximizing loading time with random access,
- minimizing memory space on disk,
- maximizing success rate of policies,
- compatibility across devices/platforms for decoding videos (e.g. video players, web browsers).
How to encode videos?
- Which video codec (`-vcodec`) to use? h264, h265, AV1?
- What pixel format to use (`-pix_fmt`)? `yuv444p` or `yuv420p`?
- How much compression (`-crf`)? No compression with `0`, intermediate compression with `25` or extreme with `50+`?
- Which frequency to chose for key frames (`-g`)? A key frame every `10` frames?
How to decode videos?
- Which `decoder`? `torchvision`, `torchaudio`, `ffmpegio`, `decord`, or `nvc`?
- What scenarios to use for the requesting timestamps during benchmark? (`timestamps_mode`)
## Variables
**Image content & size**
We don't expect the same optimal settings for a dataset of images from a simulation, or from real-world in an apartment, or in a factory, or outdoor, or with lots of moving objects in the scene, etc. Similarly, loading times might not vary linearly with the image size (resolution).
For these reasons, we run this benchmark on four representative datasets:
- `lerobot/pusht_image`: (96 x 96 pixels) simulation with simple geometric shapes, fixed camera.
- `aliberts/aloha_mobile_shrimp_image`: (480 x 640 pixels) real-world indoor, moving camera.
- `aliberts/paris_street`: (720 x 1280 pixels) real-world outdoor, moving camera.
- `aliberts/kitchen`: (1080 x 1920 pixels) real-world indoor, fixed camera.
Note: The datasets used for this benchmark need to be image datasets, not video datasets.
**Data augmentations**
We might revisit this benchmark and find better settings if we train our policies with various data augmentations to make them more robust (e.g. robust to color changes, compression, etc.).
### Encoding parameters
| parameter | values |
|-------------|--------------------------------------------------------------|
| **vcodec** | `libx264`, `libx265`, `libsvtav1` |
| **pix_fmt** | `yuv444p`, `yuv420p` |
| **g** | `1`, `2`, `3`, `4`, `5`, `6`, `10`, `15`, `20`, `40`, `None` |
| **crf** | `0`, `5`, `10`, `15`, `20`, `25`, `30`, `40`, `50`, `None` |
Note that `crf` value might be interpreted differently by various video codecs. In other words, the same value used with one codec doesn't necessarily translate into the same compression level with another codec. In fact, the default value (`None`) isn't the same amongst the different video codecs. Importantly, it is also the case for many other ffmpeg arguments like `g` which specifies the frequency of the key frames.
For a comprehensive list and documentation of these parameters, see the ffmpeg documentation depending on the video codec used:
- h264: https://trac.ffmpeg.org/wiki/Encode/H.264
- h265: https://trac.ffmpeg.org/wiki/Encode/H.265
- AV1: https://trac.ffmpeg.org/wiki/Encode/AV1
### Decoding parameters
**Decoder**
We tested two video decoding backends from torchvision:
- `pyav` (default)
- `video_reader` (requires to build torchvision from source)
**Requested timestamps**
Given the way video decoding works, once a keyframe has been loaded, the decoding of subsequent frames is fast.
This of course is affected by the `-g` parameter during encoding, which specifies the frequency of the keyframes. Given our typical use cases in robotics policies which might request a few timestamps in different random places, we want to replicate these use cases with the following scenarios:
- `1_frame`: 1 frame,
- `2_frames`: 2 consecutive frames (e.g. `[t, t + 1 / fps]`),
- `6_frames`: 6 consecutive frames (e.g. `[t + i / fps for i in range(6)]`)
Note that this differs significantly from a typical use case like watching a movie, in which every frame is loaded sequentially from the beginning to the end and it's acceptable to have big values for `-g`.
Additionally, because some policies might request single timestamps that are a few frames apart, we also have the following scenario:
- `2_frames_4_space`: 2 frames with 4 consecutive frames of spacing in between (e.g `[t, t + 5 / fps]`),
However, due to how video decoding is implemented with `pyav`, we don't have access to an accurate seek so in practice this scenario is essentially the same as `6_frames` since all 6 frames between `t` and `t + 5 / fps` will be decoded.
## Metrics
**Data compression ratio (lower is better)**
`video_images_size_ratio` is the ratio of the memory space on disk taken by the encoded video over the memory space taken by the original images. For instance, `video_images_size_ratio=25%` means that the video takes 4 times less memory space on disk compared to the original images.
**Loading time ratio (lower is better)**
`video_images_load_time_ratio` is the ratio of the time it takes to decode frames from the video at a given timestamps over the time it takes to load the exact same original images. Lower is better. For instance, `video_images_load_time_ratio=200%` means that decoding from video is 2 times slower than loading the original images.
**Average Mean Square Error (lower is better)**
`avg_mse` is the average mean square error between each decoded frame and its corresponding original image over all requested timestamps, and also divided by the number of pixels in the image to be comparable when switching to different image sizes.
**Average Peak Signal to Noise Ratio (higher is better)**
`avg_psnr` measures the ratio between the maximum possible power of a signal and the power of corrupting noise that affects the fidelity of its representation. Higher PSNR indicates better quality.
**Average Structural Similarity Index Measure (higher is better)**
`avg_ssim` evaluates the perceived quality of images by comparing luminance, contrast, and structure. SSIM values range from -1 to 1, where 1 indicates perfect similarity.
One aspect that can't be measured here with those metrics is the compatibility of the encoding across platforms, in particular on web browser, for visualization purposes.
h264, h265 and AV1 are all commonly used codecs and should not pose an issue. However, the chroma subsampling (`pix_fmt`) format might affect compatibility:
- `yuv420p` is more widely supported across various platforms, including web browsers.
- `yuv444p` offers higher color fidelity but might not be supported as broadly.
<!-- **Loss of a pretrained policy (higher is better)** (not available)
`loss_pretrained` is the result of evaluating with the selected encoding/decoding settings a policy pretrained on original images. It is easier to understand than `avg_l2_error`.
**Success rate after retraining (higher is better)** (not available)
`success_rate` is the result of training and evaluating a policy with the selected encoding/decoding settings. It is the most difficult metric to get but also the very best. -->
## How the benchmark works
The benchmark evaluates both encoding and decoding of video frames on the first episode of each dataset.
**Encoding:** for each `vcodec` and `pix_fmt` pair, we use a default value for `g` and `crf` upon which we change a single value (either `g` or `crf`) to one of the specified values (we don't test every combination of those as this would be computationally too heavy).
This gives a unique set of encoding parameters which is used to encode the episode.
**Decoding:** Then, for each of those unique encodings, we iterate through every combination of the decoding parameters `backend` and `timestamps_mode`. For each of them, we record the metrics of a number of samples (given by `--num-samples`). This is parallelized for efficiency and the number of processes can be controlled with `--num-workers`. Ideally, it's best to have a `--num-samples` that is divisible by `--num-workers`.
Intermediate results saved for each `vcodec` and `pix_fmt` combination in csv tables.
These are then all concatenated to a single table ready for analysis.
## Caveats
We tried to measure the most impactful parameters for both encoding and decoding. However, for computational reasons we can't test out every combination.
Additional encoding parameters exist that are not included in this benchmark. In particular:
- `-preset` which allows for selecting encoding presets. This represents a collection of options that will provide a certain encoding speed to compression ratio. By leaving this parameter unspecified, it is considered to be `medium` for libx264 and libx265 and `8` for libsvtav1.
- `-tune` which allows to optimize the encoding for certain aspects (e.g. film quality, fast decoding, etc.).
See the documentation mentioned above for more detailed info on these settings and for a more comprehensive list of other parameters.
Similarly on the decoding side, other decoders exist but are not implemented in our current benchmark. To name a few:
- `torchaudio`
- `ffmpegio`
- `decord`
- `nvc`
Note as well that since we are mostly interested in the performance at decoding time (also because encoding is done only once before uploading a dataset), we did not measure encoding times nor have any metrics regarding encoding.
However, besides the necessity to build ffmpeg from source, encoding did not pose any issue and it didn't take a significant amount of time during this benchmark.
## Install
Building ffmpeg from source is required to include libx265 and libaom/libsvtav1 (av1) video codecs ([compilation guide](https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu)).
**Note:** While you still need to build torchvision with a conda-installed `ffmpeg<4.3` to use the `video_reader` decoder (as described in [#220](https://github.com/huggingface/lerobot/pull/220)), you also need another version which is custom-built with all the video codecs for encoding. For the script to then use that version, you can prepend the command above with `PATH="$HOME/bin:$PATH"`, which is where ffmpeg should be built.
## Adding a video decoder
Right now, we're only benchmarking the two video decoder available with torchvision: `pyav` and `video_reader`.
You can easily add a new decoder to benchmark by adding it to this function in the script:
```diff
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(
video_path, timestamps, tolerance_s, backend
)
+ elif backend == ["your_decoder"]:
+ return your_decoder_function(
+ video_path, timestamps, tolerance_s, backend
+ )
else:
raise NotImplementedError(backend)
```
## Example
For a quick run, you can try these parameters:
```bash
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 2 20 None \
--crf 10 40 None \
--timestamps-modes 1_frame 2_frames \
--backends pyav video_reader \
--num-samples 5 \
--num-workers 5 \
--save-frames 0
```
## Results
### Reproduce
We ran the benchmark with the following parameters:
```bash
# h264 and h265 encodings
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libx264 libx265 \
--pix-fmt yuv444p yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav video_reader \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
# av1 encoding (only compatible with yuv420p and pyav decoder)
python benchmark/video/run_video_benchmark.py \
--output-dir outputs/video_benchmark \
--repo-ids \
lerobot/pusht_image \
aliberts/aloha_mobile_shrimp_image \
aliberts/paris_street \
aliberts/kitchen \
--vcodec libsvtav1 \
--pix-fmt yuv420p \
--g 1 2 3 4 5 6 10 15 20 40 None \
--crf 0 5 10 15 20 25 30 40 50 None \
--timestamps-modes 1_frame 2_frames 6_frames \
--backends pyav \
--num-samples 50 \
--num-workers 5 \
--save-frames 1
```
The full results are available [here](https://docs.google.com/spreadsheets/d/1OYJB43Qu8fC26k_OyoMFgGBBKfQRCi4BIuYitQnq3sw/edit?usp=sharing)
### Parameters selected for LeRobotDataset
Considering these results, we chose what we think is the best set of encoding parameter:
- vcodec: `libsvtav1`
- pix-fmt: `yuv420p`
- g: `2`
- crf: `30`
Since we're using av1 encoding, we're choosing the `pyav` decoder as `video_reader` does not support it (and `pyav` doesn't require a custom build of `torchvision`).
### Summary
These tables show the results for `g=2` and `crf=30`, using `timestamps-modes=6_frames` and `backend=pyav`
| video_images_size_ratio | vcodec | pix_fmt | | | |
|------------------------------------|------------|---------|-----------|-----------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | **16.97%** | 17.58% | 18.57% | 18.86% | 22.06% |
| aliberts/aloha_mobile_shrimp_image | 2.14% | 2.11% | 1.38% | **1.37%** | 5.59% |
| aliberts/paris_street | 2.12% | 2.13% | **1.54%** | **1.54%** | 4.43% |
| aliberts/kitchen | 1.40% | 1.39% | **1.00%** | **1.00%** | 2.52% |
| video_images_load_time_ratio | vcodec | pix_fmt | | | |
|------------------------------------|---------|---------|----------|---------|-----------|
| | libx264 | | libx265 | | libsvtav1 |
| repo_id | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | 6.45 | 5.19 | **1.90** | 2.12 | 2.47 |
| aliberts/aloha_mobile_shrimp_image | 11.80 | 7.92 | 0.71 | 0.85 | **0.48** |
| aliberts/paris_street | 2.21 | 2.05 | 0.36 | 0.49 | **0.30** |
| aliberts/kitchen | 1.46 | 1.46 | 0.28 | 0.51 | **0.26** |
| | | vcodec | pix_fmt | | | |
|------------------------------------|----------|----------|--------------|----------|-----------|--------------|
| | | libx264 | | libx265 | | libsvtav1 |
| repo_id | metric | yuv420p | yuv444p | yuv420p | yuv444p | yuv420p |
| lerobot/pusht_image | avg_mse | 2.90E-04 | **2.03E-04** | 3.13E-04 | 2.29E-04 | 2.19E-04 |
| | avg_psnr | 35.44 | 37.07 | 35.49 | **37.30** | 37.20 |
| | avg_ssim | 98.28% | **98.85%** | 98.31% | 98.84% | 98.72% |
| aliberts/aloha_mobile_shrimp_image | avg_mse | 2.76E-04 | 2.59E-04 | 3.17E-04 | 3.06E-04 | **1.30E-04** |
| | avg_psnr | 35.91 | 36.21 | 35.88 | 36.09 | **40.17** |
| | avg_ssim | 95.19% | 95.18% | 95.00% | 95.05% | **97.73%** |
| aliberts/paris_street | avg_mse | 6.89E-04 | 6.70E-04 | 4.03E-03 | 4.02E-03 | **3.09E-04** |
| | avg_psnr | 33.48 | 33.68 | 32.05 | 32.15 | **35.40** |
| | avg_ssim | 93.76% | 93.75% | 89.46% | 89.46% | **95.46%** |
| aliberts/kitchen | avg_mse | 2.50E-04 | 2.24E-04 | 4.28E-04 | 4.18E-04 | **1.53E-04** |
| | avg_psnr | 36.73 | 37.33 | 36.56 | 36.75 | **39.12** |
| | avg_ssim | 95.47% | 95.58% | 95.52% | 95.53% | **96.82%** |

View File

@@ -1,90 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Capture video feed from a camera as raw images."""
import argparse
import datetime as dt
from pathlib import Path
import cv2
def display_and_save_video_stream(output_dir: Path, fps: int, width: int, height: int):
now = dt.datetime.now()
capture_dir = output_dir / f"{now:%Y-%m-%d}" / f"{now:%H-%M-%S}"
if not capture_dir.exists():
capture_dir.mkdir(parents=True, exist_ok=True)
# Opens the default webcam
cap = cv2.VideoCapture(0)
if not cap.isOpened():
print("Error: Could not open video stream.")
return
cap.set(cv2.CAP_PROP_FPS, fps)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
frame_index = 0
while True:
ret, frame = cap.read()
if not ret:
print("Error: Could not read frame.")
break
cv2.imshow("Video Stream", frame)
cv2.imwrite(str(capture_dir / f"frame_{frame_index:06d}.png"), frame)
frame_index += 1
# Break the loop on 'q' key press
if cv2.waitKey(1) & 0xFF == ord("q"):
break
# Release the capture and destroy all windows
cap.release()
cv2.destroyAllWindows()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/cam_capture/"),
help="Directory where the capture images are written. A subfolder named with the current date & time will be created inside it for each capture.",
)
parser.add_argument(
"--fps",
type=int,
default=30,
help="Frames Per Second of the capture.",
)
parser.add_argument(
"--width",
type=int,
default=1280,
help="Width of the captured images.",
)
parser.add_argument(
"--height",
type=int,
default=720,
help="Height of the captured images.",
)
args = parser.parse_args()
display_and_save_video_stream(**vars(args))

View File

@@ -1,490 +0,0 @@
#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Assess the performance of video decoding in various configurations.
This script will benchmark different video encoding and decoding parameters.
See the provided README.md or run `python benchmark/video/run_video_benchmark.py --help` for usage info.
"""
import argparse
import datetime as dt
import random
import shutil
from collections import OrderedDict
from concurrent.futures import ThreadPoolExecutor, as_completed
from pathlib import Path
import einops
import numpy as np
import pandas as pd
import PIL
import torch
from skimage.metrics import mean_squared_error, peak_signal_noise_ratio, structural_similarity
from tqdm import tqdm
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset
from lerobot.common.datasets.video_utils import (
decode_video_frames_torchvision,
encode_video_frames,
)
from lerobot.common.utils.benchmark import TimeBenchmark
BASE_ENCODING = OrderedDict(
[
("vcodec", "libx264"),
("pix_fmt", "yuv444p"),
("g", 2),
("crf", None),
# TODO(aliberts): Add fastdecode
# ("fastdecode", 0),
]
)
# TODO(rcadene, aliberts): move to `utils.py` folder when we want to refactor
def parse_int_or_none(value) -> int | None:
if value.lower() == "none":
return None
try:
return int(value)
except ValueError as e:
raise argparse.ArgumentTypeError(f"Invalid int or None: {value}") from e
def check_datasets_formats(repo_ids: list) -> None:
for repo_id in repo_ids:
dataset = LeRobotDataset(repo_id)
if len(dataset.meta.video_keys) > 0:
raise ValueError(
f"Use only image dataset for running this benchmark. Video dataset provided: {repo_id}"
)
def get_directory_size(directory: Path) -> int:
total_size = 0
for item in directory.rglob("*"):
if item.is_file():
total_size += item.stat().st_size
return total_size
def load_original_frames(imgs_dir: Path, timestamps: list[float], fps: int) -> torch.Tensor:
frames = []
for ts in timestamps:
idx = int(ts * fps)
frame = PIL.Image.open(imgs_dir / f"frame_{idx:06d}.png")
frame = torch.from_numpy(np.array(frame))
frame = frame.type(torch.float32) / 255
frame = einops.rearrange(frame, "h w c -> c h w")
frames.append(frame)
return torch.stack(frames)
def save_decoded_frames(
imgs_dir: Path, save_dir: Path, frames: torch.Tensor, timestamps: list[float], fps: int
) -> None:
if save_dir.exists() and len(list(save_dir.glob("frame_*.png"))) == len(timestamps):
return
save_dir.mkdir(parents=True, exist_ok=True)
for i, ts in enumerate(timestamps):
idx = int(ts * fps)
frame_hwc = (frames[i].permute((1, 2, 0)) * 255).type(torch.uint8).cpu().numpy()
PIL.Image.fromarray(frame_hwc).save(save_dir / f"frame_{idx:06d}_decoded.png")
shutil.copyfile(imgs_dir / f"frame_{idx:06d}.png", save_dir / f"frame_{idx:06d}_original.png")
def save_first_episode(imgs_dir: Path, dataset: LeRobotDataset) -> None:
ep_num_images = dataset.episode_data_index["to"][0].item()
if imgs_dir.exists() and len(list(imgs_dir.glob("frame_*.png"))) == ep_num_images:
return
imgs_dir.mkdir(parents=True, exist_ok=True)
hf_dataset = dataset.hf_dataset.with_format(None)
# We only save images from the first camera
img_keys = [key for key in hf_dataset.features if key.startswith("observation.image")]
imgs_dataset = hf_dataset.select_columns(img_keys[0])
for i, item in enumerate(
tqdm(imgs_dataset, desc=f"saving {dataset.repo_id} first episode images", leave=False)
):
img = item[img_keys[0]]
img.save(str(imgs_dir / f"frame_{i:06d}.png"), quality=100)
if i >= ep_num_images - 1:
break
def sample_timestamps(timestamps_mode: str, ep_num_images: int, fps: int) -> list[float]:
# Start at 5 to allow for 2_frames_4_space and 6_frames
idx = random.randint(5, ep_num_images - 1)
match timestamps_mode:
case "1_frame":
frame_indexes = [idx]
case "2_frames":
frame_indexes = [idx - 1, idx]
case "2_frames_4_space":
frame_indexes = [idx - 5, idx]
case "6_frames":
frame_indexes = [idx - i for i in range(6)][::-1]
case _:
raise ValueError(timestamps_mode)
return [idx / fps for idx in frame_indexes]
def decode_video_frames(
video_path: str,
timestamps: list[float],
tolerance_s: float,
backend: str,
) -> torch.Tensor:
if backend in ["pyav", "video_reader"]:
return decode_video_frames_torchvision(video_path, timestamps, tolerance_s, backend)
else:
raise NotImplementedError(backend)
def benchmark_decoding(
imgs_dir: Path,
video_path: Path,
timestamps_mode: str,
backend: str,
ep_num_images: int,
fps: int,
num_samples: int = 50,
num_workers: int = 4,
save_frames: bool = False,
) -> dict:
def process_sample(sample: int):
time_benchmark = TimeBenchmark()
timestamps = sample_timestamps(timestamps_mode, ep_num_images, fps)
num_frames = len(timestamps)
result = {
"psnr_values": [],
"ssim_values": [],
"mse_values": [],
}
with time_benchmark:
frames = decode_video_frames(video_path, timestamps=timestamps, tolerance_s=5e-1, backend=backend)
result["load_time_video_ms"] = time_benchmark.result_ms / num_frames
with time_benchmark:
original_frames = load_original_frames(imgs_dir, timestamps, fps)
result["load_time_images_ms"] = time_benchmark.result_ms / num_frames
frames_np, original_frames_np = frames.numpy(), original_frames.numpy()
for i in range(num_frames):
result["mse_values"].append(mean_squared_error(original_frames_np[i], frames_np[i]))
result["psnr_values"].append(
peak_signal_noise_ratio(original_frames_np[i], frames_np[i], data_range=1.0)
)
result["ssim_values"].append(
structural_similarity(original_frames_np[i], frames_np[i], data_range=1.0, channel_axis=0)
)
if save_frames and sample == 0:
save_dir = video_path.with_suffix("") / f"{timestamps_mode}_{backend}"
save_decoded_frames(imgs_dir, save_dir, frames, timestamps, fps)
return result
load_times_video_ms = []
load_times_images_ms = []
mse_values = []
psnr_values = []
ssim_values = []
# A sample is a single set of decoded frames specified by timestamps_mode (e.g. a single frame, 2 frames, etc.).
# For each sample, we record metrics (loading time and quality metrics) which are then averaged over all samples.
# As these samples are independent, we run them in parallel threads to speed up the benchmark.
with ThreadPoolExecutor(max_workers=num_workers) as executor:
futures = [executor.submit(process_sample, i) for i in range(num_samples)]
for future in tqdm(as_completed(futures), total=num_samples, desc="samples", leave=False):
result = future.result()
load_times_video_ms.append(result["load_time_video_ms"])
load_times_images_ms.append(result["load_time_images_ms"])
psnr_values.extend(result["psnr_values"])
ssim_values.extend(result["ssim_values"])
mse_values.extend(result["mse_values"])
avg_load_time_video_ms = float(np.array(load_times_video_ms).mean())
avg_load_time_images_ms = float(np.array(load_times_images_ms).mean())
video_images_load_time_ratio = avg_load_time_video_ms / avg_load_time_images_ms
return {
"avg_load_time_video_ms": avg_load_time_video_ms,
"avg_load_time_images_ms": avg_load_time_images_ms,
"video_images_load_time_ratio": video_images_load_time_ratio,
"avg_mse": float(np.mean(mse_values)),
"avg_psnr": float(np.mean(psnr_values)),
"avg_ssim": float(np.mean(ssim_values)),
}
def benchmark_encoding_decoding(
dataset: LeRobotDataset,
video_path: Path,
imgs_dir: Path,
encoding_cfg: dict,
decoding_cfg: dict,
num_samples: int,
num_workers: int,
save_frames: bool,
overwrite: bool = False,
seed: int = 1337,
) -> list[dict]:
fps = dataset.fps
if overwrite or not video_path.is_file():
tqdm.write(f"encoding {video_path}")
encode_video_frames(
imgs_dir=imgs_dir,
video_path=video_path,
fps=fps,
vcodec=encoding_cfg["vcodec"],
pix_fmt=encoding_cfg["pix_fmt"],
g=encoding_cfg.get("g"),
crf=encoding_cfg.get("crf"),
# fast_decode=encoding_cfg.get("fastdecode"),
overwrite=True,
)
ep_num_images = dataset.episode_data_index["to"][0].item()
width, height = tuple(dataset[0][dataset.meta.camera_keys[0]].shape[-2:])
num_pixels = width * height
video_size_bytes = video_path.stat().st_size
images_size_bytes = get_directory_size(imgs_dir)
video_images_size_ratio = video_size_bytes / images_size_bytes
random.seed(seed)
benchmark_table = []
for timestamps_mode in tqdm(
decoding_cfg["timestamps_modes"], desc="decodings (timestamps_modes)", leave=False
):
for backend in tqdm(decoding_cfg["backends"], desc="decodings (backends)", leave=False):
benchmark_row = benchmark_decoding(
imgs_dir,
video_path,
timestamps_mode,
backend,
ep_num_images,
fps,
num_samples,
num_workers,
save_frames,
)
benchmark_row.update(
**{
"repo_id": dataset.repo_id,
"resolution": f"{width} x {height}",
"num_pixels": num_pixels,
"video_size_bytes": video_size_bytes,
"images_size_bytes": images_size_bytes,
"video_images_size_ratio": video_images_size_ratio,
"timestamps_mode": timestamps_mode,
"backend": backend,
},
**encoding_cfg,
)
benchmark_table.append(benchmark_row)
return benchmark_table
def main(
output_dir: Path,
repo_ids: list[str],
vcodec: list[str],
pix_fmt: list[str],
g: list[int],
crf: list[int],
# fastdecode: list[int],
timestamps_modes: list[str],
backends: list[str],
num_samples: int,
num_workers: int,
save_frames: bool,
):
check_datasets_formats(repo_ids)
encoding_benchmarks = {
"g": g,
"crf": crf,
# "fastdecode": fastdecode,
}
decoding_benchmarks = {
"timestamps_modes": timestamps_modes,
"backends": backends,
}
headers = ["repo_id", "resolution", "num_pixels"]
headers += list(BASE_ENCODING.keys())
headers += [
"timestamps_mode",
"backend",
"video_size_bytes",
"images_size_bytes",
"video_images_size_ratio",
"avg_load_time_video_ms",
"avg_load_time_images_ms",
"video_images_load_time_ratio",
"avg_mse",
"avg_psnr",
"avg_ssim",
]
file_paths = []
for video_codec in tqdm(vcodec, desc="encodings (vcodec)"):
for pixel_format in tqdm(pix_fmt, desc="encodings (pix_fmt)", leave=False):
benchmark_table = []
for repo_id in tqdm(repo_ids, desc="encodings (datasets)", leave=False):
dataset = LeRobotDataset(repo_id)
imgs_dir = output_dir / "images" / dataset.repo_id.replace("/", "_")
# We only use the first episode
save_first_episode(imgs_dir, dataset)
for key, values in tqdm(encoding_benchmarks.items(), desc="encodings (g, crf)", leave=False):
for value in tqdm(values, desc=f"encodings ({key})", leave=False):
encoding_cfg = BASE_ENCODING.copy()
encoding_cfg["vcodec"] = video_codec
encoding_cfg["pix_fmt"] = pixel_format
encoding_cfg[key] = value
args_path = Path("_".join(str(value) for value in encoding_cfg.values()))
video_path = output_dir / "videos" / args_path / f"{repo_id.replace('/', '_')}.mp4"
benchmark_table += benchmark_encoding_decoding(
dataset,
video_path,
imgs_dir,
encoding_cfg,
decoding_benchmarks,
num_samples,
num_workers,
save_frames,
)
# Save intermediate results
benchmark_df = pd.DataFrame(benchmark_table, columns=headers)
now = dt.datetime.now()
csv_path = (
output_dir
/ f"{now:%Y-%m-%d}_{now:%H-%M-%S}_{video_codec}_{pixel_format}_{num_samples}-samples.csv"
)
benchmark_df.to_csv(csv_path, header=True, index=False)
file_paths.append(csv_path)
del benchmark_df
# Concatenate all results
df_list = [pd.read_csv(csv_path) for csv_path in file_paths]
concatenated_df = pd.concat(df_list, ignore_index=True)
concatenated_path = output_dir / f"{now:%Y-%m-%d}_{now:%H-%M-%S}_all_{num_samples}-samples.csv"
concatenated_df.to_csv(concatenated_path, header=True, index=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"--output-dir",
type=Path,
default=Path("outputs/video_benchmark"),
help="Directory where the video benchmark outputs are written.",
)
parser.add_argument(
"--repo-ids",
type=str,
nargs="*",
default=[
"lerobot/pusht_image",
"aliberts/aloha_mobile_shrimp_image",
"aliberts/paris_street",
"aliberts/kitchen",
],
help="Datasets repo-ids to test against. First episodes only are used. Must be images.",
)
parser.add_argument(
"--vcodec",
type=str,
nargs="*",
default=["libx264", "libx265", "libsvtav1"],
help="Video codecs to be tested",
)
parser.add_argument(
"--pix-fmt",
type=str,
nargs="*",
default=["yuv444p", "yuv420p"],
help="Pixel formats (chroma subsampling) to be tested",
)
parser.add_argument(
"--g",
type=parse_int_or_none,
nargs="*",
default=[1, 2, 3, 4, 5, 6, 10, 15, 20, 40, 100, None],
help="Group of pictures sizes to be tested.",
)
parser.add_argument(
"--crf",
type=parse_int_or_none,
nargs="*",
default=[0, 5, 10, 15, 20, 25, 30, 40, 50, None],
help="Constant rate factors to be tested.",
)
# parser.add_argument(
# "--fastdecode",
# type=int,
# nargs="*",
# default=[0, 1],
# help="Use the fastdecode tuning option. 0 disables it. "
# "For libx264 and libx265, only 1 is possible. "
# "For libsvtav1, 1, 2 or 3 are possible values with a higher number meaning a faster decoding optimization",
# )
parser.add_argument(
"--timestamps-modes",
type=str,
nargs="*",
default=[
"1_frame",
"2_frames",
"2_frames_4_space",
"6_frames",
],
help="Timestamps scenarios to be tested.",
)
parser.add_argument(
"--backends",
type=str,
nargs="*",
default=["pyav", "video_reader"],
help="Torchvision decoding backend to be tested.",
)
parser.add_argument(
"--num-samples",
type=int,
default=50,
help="Number of samples for each encoding x decoding config.",
)
parser.add_argument(
"--num-workers",
type=int,
default=10,
help="Number of processes for parallelized sample processing.",
)
parser.add_argument(
"--save-frames",
type=int,
default=0,
help="Whether to save decoded frames or not. Enter a non-zero number for true.",
)
args = parser.parse_args()
main(**vars(args))

View File

@@ -1,29 +0,0 @@
# Configure image
ARG PYTHON_VERSION=3.10
FROM python:${PYTHON_VERSION}-slim
# Configure environment variables
ARG PYTHON_VERSION
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
# Install dependencies and set up Python in a single layer
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]" \
--extra-index-url https://download.pytorch.org/whl/cpu
# Execute in bash shell rather than python
CMD ["/bin/bash"]

View File

@@ -1,68 +0,0 @@
FROM nvidia/cuda:12.2.2-devel-ubuntu22.04
# Configure image
ARG PYTHON_VERSION=3.10
ARG DEBIAN_FRONTEND=noninteractive
# Install apt dependencies
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake \
git git-lfs openssh-client \
nano vim less util-linux tree \
htop atop nvtop \
sed gawk grep curl wget zip unzip \
tcpdump sysstat screen tmux \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa \
speech-dispatcher portaudio19-dev libgeos-dev \
python${PYTHON_VERSION} python${PYTHON_VERSION}-venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/*
# Install ffmpeg build dependencies. See:
# https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
# TODO(aliberts): create image to build dependencies from source instead
RUN apt-get update && apt-get install -y --no-install-recommends \
autoconf automake yasm \
libass-dev \
libfreetype6-dev \
libgnutls28-dev \
libunistring-dev \
libmp3lame-dev \
libtool \
libvorbis-dev \
meson \
ninja-build \
pkg-config \
texinfo \
yasm \
zlib1g-dev \
nasm \
libx264-dev \
libx265-dev libnuma-dev \
libvpx-dev \
libfdk-aac-dev \
libopus-dev \
libsvtav1-dev libsvtav1enc-dev libsvtav1dec-dev \
libdav1d-dev
# Install gh cli tool
RUN (type -p wget >/dev/null || (apt update && apt-get install wget -y)) \
&& mkdir -p -m 755 /etc/apt/keyrings \
&& wget -qO- https://cli.github.com/packages/githubcli-archive-keyring.gpg | tee /etc/apt/keyrings/githubcli-archive-keyring.gpg > /dev/null \
&& chmod go+r /etc/apt/keyrings/githubcli-archive-keyring.gpg \
&& echo "deb [arch=$(dpkg --print-architecture) signed-by=/etc/apt/keyrings/githubcli-archive-keyring.gpg] https://cli.github.com/packages stable main" | tee /etc/apt/sources.list.d/github-cli.list > /dev/null \
&& apt update \
&& apt install gh -y \
&& apt clean && rm -rf /var/lib/apt/lists/*
# Setup `python`
RUN ln -s /usr/bin/python3 /usr/bin/python
# Install poetry
RUN curl -sSL https://install.python-poetry.org | python -
ENV PATH="/root/.local/bin:$PATH"
RUN echo 'if [ "$HOME" != "/root" ]; then ln -sf /root/.local/bin/poetry $HOME/.local/bin/poetry; fi' >> /root/.bashrc
RUN poetry config virtualenvs.create false
RUN poetry config virtualenvs.in-project true
# Set EGL as the rendering backend for MuJoCo
ENV MUJOCO_GL="egl"

View File

@@ -1,24 +0,0 @@
FROM nvidia/cuda:12.4.1-base-ubuntu22.04
# Configure environment variables
ARG PYTHON_VERSION=3.10
ENV DEBIAN_FRONTEND=noninteractive
ENV MUJOCO_GL="egl"
ENV PATH="/opt/venv/bin:$PATH"
# Install dependencies and set up Python in a single layer
RUN apt-get update && apt-get install -y --no-install-recommends \
build-essential cmake git \
libglib2.0-0 libgl1-mesa-glx libegl1-mesa ffmpeg \
speech-dispatcher libgeos-dev \
python${PYTHON_VERSION}-dev python${PYTHON_VERSION}-venv \
&& ln -s /usr/bin/python${PYTHON_VERSION} /usr/bin/python \
&& python -m venv /opt/venv \
&& apt-get clean && rm -rf /var/lib/apt/lists/* \
&& echo "source /opt/venv/bin/activate" >> /root/.bashrc
# Clone repository and install LeRobot in a single layer
COPY . /lerobot
WORKDIR /lerobot
RUN /opt/venv/bin/pip install --upgrade --no-cache-dir pip \
&& /opt/venv/bin/pip install --no-cache-dir ".[test, aloha, xarm, pusht, dynamixel]"

1
envs/sim_aloha/README.md Normal file
View File

@@ -0,0 +1 @@
# ALOHA environment for LeRobot

View File

View File

@@ -0,0 +1,59 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -0,0 +1,48 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<equality>
<weld body1="mocap_left" body2="vx300s_left/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
<weld body1="mocap_right" body2="vx300s_right/gripper_link" solref="0.01 1" solimp=".25 .25 0.001" />
</equality>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body mocap="true" name="mocap_left" pos="0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_left_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_left_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_left_site3" rgba="1 0 0 1"/>
</body>
<body mocap="true" name="mocap_right" pos="-0.095 0.50 0.425">
<site pos="0 0 0" size="0.003 0.003 0.03" type="box" name="mocap_right_site1" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.003 0.03 0.003" type="box" name="mocap_right_site2" rgba="1 0 0 1"/>
<site pos="0 0 0" size="0.03 0.003 0.003" type="box" name="mocap_right_site3" rgba="1 0 0 1"/>
</body>
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -0,0 +1,53 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="peg" pos="0.2 0.5 0.05">
<joint name="red_peg_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg" rgba="1 0 0 1" />
</body>
<body name="socket" pos="-0.2 0.5 0.05">
<joint name="blue_socket_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<!-- <geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.06 0.01 0.01" type="box" name="red_peg_ref" rgba="1 0 0 1" />-->
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 -0.02" size="0.06 0.018 0.002" type="box" name="socket-1" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0 0.02" size="0.06 0.018 0.002" type="box" name="socket-2" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 0.02 0" size="0.06 0.002 0.018" type="box" name="socket-3" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.05 0.001" pos="0 -0.02 0" size="0.06 0.002 0.018" type="box" name="socket-4" rgba="0 0 1 1" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.04 0.01 0.01" type="box" name="pin" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0 -0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -0,0 +1,42 @@
<mujoco>
<include file="scene.xml"/>
<include file="vx300s_dependencies.xml"/>
<worldbody>
<include file="vx300s_left.xml" />
<include file="vx300s_right.xml" />
<body name="box" pos="0.2 0.5 0.05">
<joint name="red_box_joint" type="free" frictionloss="0.01" />
<inertial pos="0 0 0" mass="0.05" diaginertia="0.002 0.002 0.002" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0 0 0" size="0.02 0.02 0.02" type="box" name="red_box" rgba="1 0 0 1" />
</body>
</worldbody>
<actuator>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_left/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_left/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_left/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_left/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_left/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_left/right_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/waist" kp="800" user="1" forcelimited="true" forcerange="-150 150"/>
<position ctrllimited="true" ctrlrange="-1.85005 1.25664" joint="vx300s_right/shoulder" kp="1600" user="1" forcelimited="true" forcerange="-300 300"/>
<position ctrllimited="true" ctrlrange="-1.76278 1.6057" joint="vx300s_right/elbow" kp="800" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/forearm_roll" kp="10" user="1" forcelimited="true" forcerange="-100 100"/>
<position ctrllimited="true" ctrlrange="-1.8675 2.23402" joint="vx300s_right/wrist_angle" kp="50" user="1"/>
<position ctrllimited="true" ctrlrange="-3.14158 3.14158" joint="vx300s_right/wrist_rotate" kp="20" user="1"/>
<position ctrllimited="true" ctrlrange="0.021 0.057" joint="vx300s_right/left_finger" kp="200" user="1"/>
<position ctrllimited="true" ctrlrange="-0.057 -0.021" joint="vx300s_right/right_finger" kp="200" user="1"/>
</actuator>
<keyframe>
<key qpos="0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0 -0.96 1.16 0 -0.3 0 0.024 -0.024 0.2 0.5 0.05 1 0 0 0"/>
</keyframe>
</mujoco>

View File

@@ -0,0 +1,38 @@
<mujocoinclude>
<!-- <option timestep='0.0025' iterations="50" tolerance="1e-10" solver="Newton" jacobian="dense" cone="elliptic"/>-->
<asset>
<mesh file="tabletop.stl" name="tabletop" scale="0.001 0.001 0.001"/>
</asset>
<visual>
<map fogstart="1.5" fogend="5" force="0.1" znear="0.1"/>
<quality shadowsize="4096" offsamples="4"/>
<headlight ambient="0.4 0.4 0.4"/>
</visual>
<worldbody>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='-1 -1 1'
dir='1 1 -1'/>
<light directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='1 -1 1' dir='-1 1 -1'/>
<light castshadow="false" directional='true' diffuse='.3 .3 .3' specular='0.3 0.3 0.3' pos='0 1 1'
dir='0 -1 -1'/>
<body name="table" pos="0 .6 0">
<geom group="1" mesh="tabletop" pos="0 0 0" type="mesh" conaffinity="1" contype="1" name="table" rgba="0.2 0.2 0.2 1" />
</body>
<body name="midair" pos="0 .6 0.2">
<site pos="0 0 0" size="0.01" type="sphere" name="midair" rgba="1 0 0 0"/>
</body>
<camera name="left_pillar" pos="-0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="right_pillar" pos="0.5 0.2 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="top" pos="0 0.6 0.8" fovy="78" mode="targetbody" target="table"/>
<camera name="angle" pos="0 0 0.6" fovy="78" mode="targetbody" target="table"/>
<camera name="front_close" pos="0 0.2 0.4" fovy="78" mode="targetbody" target="vx300s_left/camera_focus"/>
</worldbody>
</mujocoinclude>

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:76a1571d1aa36520f2bd81c268991b99816c2a7819464d718e0fd9976fe30dce
size 684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:df73ae5b9058e5d50a6409ac2ab687dade75053a86591bb5e23ab051dbf2d659
size 83384

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:56fb3cc1236d4193106038adf8e457c7252ae9e86c7cee6dabf0578c53666358
size 83384

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a4baacd9a64df1be60ea5e98f50f3c660e1b7a1fe9684aace6004c5058c09483
size 42884

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a18a1601074d29ed1d546ead70cd18fbb063f1db7b5b96b9f0365be714f3136a
size 3884

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d100cafe656671ca8fde98fb6a4cf2d1b746995c51c61c25ad9ea2715635d146
size 99984

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:139745a74055cb0b23430bb5bc032bf68cf7bea5e4975c8f4c04107ae005f7f0
size 63884

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:900f236320dd3d500870c5fde763b2d47502d51e043a5c377875e70237108729
size 102984

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:4104fc54bbfb8a9b533029f1e7e3ade3d54d638372b3195daa0c98f57e0295b5
size 49584

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:66814e27fa728056416e25e02e89eb7d34c51d51c51e7c3df873829037ddc6b8
size 99884

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:90eb145c85627968c3776ae6de23ccff7e112c9dd713c46bc9acdfdaa859a048
size 70784

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:786c1077bfd226f14219581b11d5f19464ca95b17132e0bb7532503568f5af90
size 450084

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:d1275a93fe2157c83dbc095617fb7e672888bdd48ec070a35ef4ab9ebd9755b0
size 31684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a4de62c9a2ed2c78433010e4c05530a1254b1774a7651967f406120c9bf8973e
size 379484

View File

@@ -0,0 +1,17 @@
<mujocoinclude>
<compiler angle="radian" inertiafromgeom="auto" inertiagrouprange="4 5"/>
<asset>
<mesh name="vx300s_1_base" file="vx300s_1_base.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_2_shoulder" file="vx300s_2_shoulder.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_3_upper_arm" file="vx300s_3_upper_arm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_4_upper_forearm" file="vx300s_4_upper_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_5_lower_forearm" file="vx300s_5_lower_forearm.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_6_wrist" file="vx300s_6_wrist.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_7_gripper" file="vx300s_7_gripper.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_8_gripper_prop" file="vx300s_8_gripper_prop.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_9_gripper_bar" file="vx300s_9_gripper_bar.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_left" file="vx300s_10_custom_finger_left.stl" scale="0.001 0.001 0.001" />
<mesh name="vx300s_10_gripper_finger_right" file="vx300s_10_custom_finger_right.stl" scale="0.001 0.001 0.001" />
</asset>
</mujocoinclude>

View File

@@ -0,0 +1,59 @@
<mujocoinclude>
<body name="vx300s_left" pos="-0.469 0.5 0">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_left/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_left/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_left/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_left/2_shoulder" />
<body name="vx300s_left/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_left/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_left/3_upper_arm"/>
<body name="vx300s_left/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_left/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_left/4_upper_forearm" />
<body name="vx300s_left/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_left/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_left/5_lower_forearm"/>
<body name="vx300s_left/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_left/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_left/6_wrist" />
<body name="vx300s_left/gripper_link" pos="0.069744 0 0">
<body name="vx300s_left/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="left_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_left_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_left_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_left_site3" rgba="0 0 1 0"/>
<camera name="left_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_left/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_left/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_left/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_left/9_gripper_bar" />
<body name="vx300s_left/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_left/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_left/8_gripper_prop" />
</body>
<body name="vx300s_left/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_left/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_left/10_left_gripper_finger"/>
</body>
<body name="vx300s_left/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_left/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_left/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

View File

@@ -0,0 +1,59 @@
<mujocoinclude>
<body name="vx300s_right" pos="0.469 0.5 0" euler="0 0 3.1416">
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_1_base" name="vx300s_right/1_base" contype="0" conaffinity="0"/>
<body name="vx300s_right/shoulder_link" pos="0 0 0.079">
<inertial pos="0.000259233 -3.3552e-06 0.0116129" quat="-0.476119 0.476083 0.52279 0.522826" mass="0.798614" diaginertia="0.00120156 0.00113744 0.0009388" />
<joint name="vx300s_right/waist" pos="0 0 0" axis="0 0 1" limited="true" range="-3.14158 3.14158" frictionloss="50" />
<geom pos="0 0 -0.003" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_2_shoulder" name="vx300s_right/2_shoulder" />
<body name="vx300s_right/upper_arm_link" pos="0 0 0.04805">
<inertial pos="0.0206949 4e-10 0.226459" quat="0 0.0728458 0 0.997343" mass="0.792592" diaginertia="0.00911338 0.008925 0.000759317" />
<joint name="vx300s_right/shoulder" pos="0 0 0" axis="0 1 0" limited="true" range="-1.85005 1.25664" frictionloss="60" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_3_upper_arm" name="vx300s_right/3_upper_arm"/>
<body name="vx300s_right/upper_forearm_link" pos="0.05955 0 0.3">
<inertial pos="0.105723 0 0" quat="-0.000621631 0.704724 0.0105292 0.709403" mass="0.322228" diaginertia="0.00144107 0.00134228 0.000152047" />
<joint name="vx300s_right/elbow" pos="0 0 0" axis="0 1 0" limited="true" range="-1.76278 1.6057" frictionloss="60" />
<geom type="mesh" mesh="vx300s_4_upper_forearm" name="vx300s_right/4_upper_forearm" />
<body name="vx300s_right/lower_forearm_link" pos="0.2 0 0">
<inertial pos="0.0513477 0.00680462 0" quat="-0.702604 -0.0796724 -0.702604 0.0796724" mass="0.414823" diaginertia="0.0005911 0.000546493 0.000155707" />
<joint name="vx300s_right/forearm_roll" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom quat="0 1 0 0" type="mesh" mesh="vx300s_5_lower_forearm" name="vx300s_right/5_lower_forearm"/>
<body name="vx300s_right/wrist_link" pos="0.1 0 0">
<inertial pos="0.046743 -7.6652e-06 0.010565" quat="-0.00100191 0.544586 0.0026583 0.8387" mass="0.115395" diaginertia="5.45707e-05 4.63101e-05 4.32692e-05" />
<joint name="vx300s_right/wrist_angle" pos="0 0 0" axis="0 1 0" limited="true" range="-1.8675 2.23402" frictionloss="30" />
<geom quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_6_wrist" name="vx300s_right/6_wrist" />
<body name="vx300s_right/gripper_link" pos="0.069744 0 0">
<body name="vx300s_right/camera_focus" pos="0.15 0 0.01">
<site pos="0 0 0" size="0.01" type="sphere" name="right_cam_focus" rgba="0 0 1 0"/>
</body>
<site pos="0.15 0 0" size="0.003 0.003 0.03" type="box" name="cali_right_site1" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.003 0.03 0.003" type="box" name="cali_right_site2" rgba="0 0 1 0"/>
<site pos="0.15 0 0" size="0.03 0.003 0.003" type="box" name="cali_right_site3" rgba="0 0 1 0"/>
<camera name="right_wrist" pos="-0.1 0 0.16" fovy="20" mode="targetbody" target="vx300s_right/camera_focus"/>
<inertial pos="0.0395662 -2.56311e-07 0.00400649" quat="0.62033 0.619916 -0.339682 0.339869" mass="0.251652" diaginertia="0.000689546 0.000650316 0.000468142" />
<joint name="vx300s_right/wrist_rotate" pos="0 0 0" axis="1 0 0" limited="true" range="-3.14158 3.14158" frictionloss="30" />
<geom pos="-0.02 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_7_gripper" name="vx300s_right/7_gripper" />
<geom pos="-0.020175 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_9_gripper_bar" name="vx300s_right/9_gripper_bar" />
<body name="vx300s_right/gripper_prop_link" pos="0.0485 0 0">
<inertial pos="0.002378 2.85e-08 0" quat="0 0 0.897698 0.440611" mass="0.008009" diaginertia="4.2979e-06 2.8868e-06 1.5314e-06" />
<!-- <joint name="vx300s_right/gripper" pos="0 0 0" axis="1 0 0" frictionloss="30" />-->
<geom pos="-0.0685 0 0" quat="0.707107 0 0 0.707107" type="mesh" mesh="vx300s_8_gripper_prop" name="vx300s_right/8_gripper_prop" />
</body>
<body name="vx300s_right/left_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 -0.0060692 0" quat="0.449364 0.449364 -0.54596 -0.54596" mass="0.034796" diaginertia="2.48003e-05 1.417e-05 1.20797e-05" />
<joint name="vx300s_right/left_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="0.021 0.057" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 -0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_left" name="vx300s_right/10_left_gripper_finger"/>
</body>
<body name="vx300s_right/right_finger_link" pos="0.0687 0 0">
<inertial pos="0.017344 0.0060692 0" quat="0.44937 -0.44937 0.545955 -0.545955" mass="0.034796" diaginertia="2.48002e-05 1.417e-05 1.20798e-05" />
<joint name="vx300s_right/right_finger" pos="0 0 0" axis="0 1 0" type="slide" limited="true" range="-0.057 -0.021" frictionloss="30" />
<geom condim="4" solimp="2 1 0.01" solref="0.01 1" friction="1 0.005 0.0001" pos="0.005 0.052 0" euler="3.14 1.57 0" type="mesh" mesh="vx300s_10_gripper_finger_right" name="vx300s_right/10_right_gripper_finger"/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujocoinclude>

View File

@@ -0,0 +1,163 @@
from pathlib import Path
### Simulation envs fixed constants
DT = 0.02 # 0.02 ms -> 1/0.2 = 50 hz
FPS = 50
JOINTS = [
# absolute joint position
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"left_arm_gripper",
# absolute joint position
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position 0: close, 1: open
"right_arm_gripper",
]
ACTIONS = [
# position and quaternion for end effector
"left_arm_waist",
"left_arm_shoulder",
"left_arm_elbow",
"left_arm_forearm_roll",
"left_arm_wrist_angle",
"left_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"left_arm_gripper",
"right_arm_waist",
"right_arm_shoulder",
"right_arm_elbow",
"right_arm_forearm_roll",
"right_arm_wrist_angle",
"right_arm_wrist_rotate",
# normalized gripper position (0: close, 1: open)
"right_arm_gripper",
]
START_ARM_POSE = [
0,
-0.96,
1.16,
0,
-0.3,
0,
0.02239,
-0.02239,
0,
-0.96,
1.16,
0,
-0.3,
0,
0.02239,
-0.02239,
]
ASSETS_DIR = Path(__file__).parent.resolve() / "assets" # note: absolute path
# Left finger position limits (qpos[7]), right_finger = -1 * left_finger
MASTER_GRIPPER_POSITION_OPEN = 0.02417
MASTER_GRIPPER_POSITION_CLOSE = 0.01244
PUPPET_GRIPPER_POSITION_OPEN = 0.05800
PUPPET_GRIPPER_POSITION_CLOSE = 0.01844
# Gripper joint limits (qpos[6])
MASTER_GRIPPER_JOINT_OPEN = 0.3083
MASTER_GRIPPER_JOINT_CLOSE = -0.6842
PUPPET_GRIPPER_JOINT_OPEN = 1.4910
PUPPET_GRIPPER_JOINT_CLOSE = -0.6213
MASTER_GRIPPER_JOINT_MID = (MASTER_GRIPPER_JOINT_OPEN + MASTER_GRIPPER_JOINT_CLOSE) / 2
############################ Helper functions ############################
def normalize_master_gripper_position(x):
return (x - MASTER_GRIPPER_POSITION_CLOSE) / (
MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE
)
def normalize_puppet_gripper_position(x):
return (x - PUPPET_GRIPPER_POSITION_CLOSE) / (
PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE
)
def unnormalize_master_gripper_position(x):
return x * (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE) + MASTER_GRIPPER_POSITION_CLOSE
def unnormalize_puppet_gripper_position(x):
return x * (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE) + PUPPET_GRIPPER_POSITION_CLOSE
def convert_position_from_master_to_puppet(x):
return unnormalize_puppet_gripper_position(normalize_master_gripper_position(x))
def normalizer_master_gripper_joint(x):
return (x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
def normalize_puppet_gripper_joint(x):
return (x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
def unnormalize_master_gripper_joint(x):
return x * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE) + MASTER_GRIPPER_JOINT_CLOSE
def unnormalize_puppet_gripper_joint(x):
return x * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE) + PUPPET_GRIPPER_JOINT_CLOSE
def convert_join_from_master_to_puppet(x):
return unnormalize_puppet_gripper_joint(normalizer_master_gripper_joint(x))
def normalize_master_gripper_velocity(x):
return x / (MASTER_GRIPPER_POSITION_OPEN - MASTER_GRIPPER_POSITION_CLOSE)
def normalize_puppet_gripper_velocity(x):
return x / (PUPPET_GRIPPER_POSITION_OPEN - PUPPET_GRIPPER_POSITION_CLOSE)
def convert_master_from_position_to_joint(x):
return (
normalize_master_gripper_position(x) * (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
+ MASTER_GRIPPER_JOINT_CLOSE
)
def convert_master_from_joint_to_position(x):
return unnormalize_master_gripper_position(
(x - MASTER_GRIPPER_JOINT_CLOSE) / (MASTER_GRIPPER_JOINT_OPEN - MASTER_GRIPPER_JOINT_CLOSE)
)
def convert_puppet_from_position_to_join(x):
return (
normalize_puppet_gripper_position(x) * (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
+ PUPPET_GRIPPER_JOINT_CLOSE
)
def convert_puppet_from_joint_to_position(x):
return unnormalize_puppet_gripper_position(
(x - PUPPET_GRIPPER_JOINT_CLOSE) / (PUPPET_GRIPPER_JOINT_OPEN - PUPPET_GRIPPER_JOINT_CLOSE)
)

View File

@@ -0,0 +1,40 @@
from dm_control import mujoco
from dm_control.rl import control
from aloha.constants import ASSETS_DIR, DT
from aloha.tasks.sim import InsertionTask, TransferCubeTask
from aloha.tasks.sim_end_effector import (
InsertionEndEffectorTask,
TransferCubeEndEffectorTask,
)
def make_env_task(task_name):
# time limit is controlled by StepCounter in env factory
time_limit = float("inf")
if "sim_transfer_cube" in task_name:
xml_path = ASSETS_DIR / "bimanual_viperx_transfer_cube.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = TransferCubeTask(random=False)
elif "sim_insertion" in task_name:
xml_path = ASSETS_DIR / "bimanual_viperx_insertion.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = InsertionTask(random=False)
elif "sim_end_effector_transfer_cube" in task_name:
raise NotImplementedError()
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_transfer_cube.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = TransferCubeEndEffectorTask(random=False)
elif "sim_end_effector_insertion" in task_name:
raise NotImplementedError()
xml_path = ASSETS_DIR / "bimanual_viperx_end_effector_insertion.xml"
physics = mujoco.Physics.from_xml_path(str(xml_path))
task = InsertionEndEffectorTask(random=False)
else:
raise NotImplementedError(task_name)
env = control.Environment(
physics, task, time_limit, control_timestep=DT, n_sub_steps=None, flat_observation=False
)
return env

View File

@@ -0,0 +1,218 @@
import collections
import numpy as np
from aloha.constants import (
START_ARM_POSE,
normalize_puppet_gripper_position,
normalize_puppet_gripper_velocity,
unnormalize_puppet_gripper_position,
)
from dm_control.suite import base
BOX_POSE = [None] # to be changed from outside
"""
Environment for simulated robot bi-manual manipulation, with joint position control
Action space: [left_arm_qpos (6), # absolute joint position
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
right_arm_qvel (6), # absolute joint velocity (rad)
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
"""
class BimanualViperXTask(base.Task):
def __init__(self, random=None):
super().__init__(random=random)
def before_step(self, action, physics):
left_arm_action = action[:6]
right_arm_action = action[7 : 7 + 6]
normalized_left_gripper_action = action[6]
normalized_right_gripper_action = action[7 + 6]
left_gripper_action = unnormalize_puppet_gripper_position(normalized_left_gripper_action)
right_gripper_action = unnormalize_puppet_gripper_position(normalized_right_gripper_action)
full_left_gripper_action = [left_gripper_action, -left_gripper_action]
full_right_gripper_action = [right_gripper_action, -right_gripper_action]
env_action = np.concatenate(
[left_arm_action, full_left_gripper_action, right_arm_action, full_right_gripper_action]
)
super().before_step(env_action, physics)
return
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
super().initialize_episode(physics)
@staticmethod
def get_qpos(physics):
qpos_raw = physics.data.qpos.copy()
left_qpos_raw = qpos_raw[:8]
right_qpos_raw = qpos_raw[8:16]
left_arm_qpos = left_qpos_raw[:6]
right_arm_qpos = right_qpos_raw[:6]
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
@staticmethod
def get_qvel(physics):
qvel_raw = physics.data.qvel.copy()
left_qvel_raw = qvel_raw[:8]
right_qvel_raw = qvel_raw[8:16]
left_arm_qvel = left_qvel_raw[:6]
right_arm_qvel = right_qvel_raw[:6]
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
@staticmethod
def get_env_state(physics):
raise NotImplementedError
def get_observation(self, physics):
obs = collections.OrderedDict()
obs["qpos"] = self.get_qpos(physics)
obs["qvel"] = self.get_qvel(physics)
obs["env_state"] = self.get_env_state(physics)
obs["images"] = {}
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
return obs
def get_reward(self, physics):
# return whether left gripper is holding the box
raise NotImplementedError
class TransferCubeTask(BimanualViperXTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
# reset qpos, control and box position
with physics.reset_context():
physics.named.data.qpos[:16] = START_ARM_POSE
np.copyto(physics.data.ctrl, START_ARM_POSE)
assert BOX_POSE[0] is not None
physics.named.data.qpos[-7:] = BOX_POSE[0]
# print(f"{BOX_POSE=}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether left gripper is holding the box
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_table = ("red_box", "table") in all_contact_pairs
reward = 0
if touch_right_gripper:
reward = 1
if touch_right_gripper and not touch_table: # lifted
reward = 2
if touch_left_gripper: # attempted transfer
reward = 3
if touch_left_gripper and not touch_table: # successful transfer
reward = 4
return reward
class InsertionTask(BimanualViperXTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
# TODO Notice: this function does not randomize the env configuration. Instead, set BOX_POSE from outside
# reset qpos, control and box position
with physics.reset_context():
physics.named.data.qpos[:16] = START_ARM_POSE
np.copyto(physics.data.ctrl, START_ARM_POSE)
assert BOX_POSE[0] is not None
physics.named.data.qpos[-7 * 2 :] = BOX_POSE[0] # two objects
# print(f"{BOX_POSE=}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether peg touches the pin
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_left_gripper = (
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
)
peg_touch_table = ("red_peg", "table") in all_contact_pairs
socket_touch_table = (
("socket-1", "table") in all_contact_pairs
or ("socket-2", "table") in all_contact_pairs
or ("socket-3", "table") in all_contact_pairs
or ("socket-4", "table") in all_contact_pairs
)
peg_touch_socket = (
("red_peg", "socket-1") in all_contact_pairs
or ("red_peg", "socket-2") in all_contact_pairs
or ("red_peg", "socket-3") in all_contact_pairs
or ("red_peg", "socket-4") in all_contact_pairs
)
pin_touched = ("red_peg", "pin") in all_contact_pairs
reward = 0
if touch_left_gripper and touch_right_gripper: # touch both
reward = 1
if (
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
): # grasp both
reward = 2
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
reward = 3
if pin_touched: # successful insertion
reward = 4
return reward

View File

@@ -0,0 +1,262 @@
import collections
import numpy as np
from aloha.constants import (
PUPPET_GRIPPER_POSITION_CLOSE,
START_ARM_POSE,
normalize_puppet_gripper_position,
normalize_puppet_gripper_velocity,
unnormalize_puppet_gripper_position,
)
from aloha.utils import sample_box_pose, sample_insertion_pose
from dm_control.suite import base
"""
Environment for simulated robot bi-manual manipulation, with end-effector control.
Action space: [left_arm_pose (7), # position and quaternion for end effector
left_gripper_positions (1), # normalized gripper position (0: close, 1: open)
right_arm_pose (7), # position and quaternion for end effector
right_gripper_positions (1),] # normalized gripper position (0: close, 1: open)
Observation space: {"qpos": Concat[ left_arm_qpos (6), # absolute joint position
left_gripper_position (1), # normalized gripper position (0: close, 1: open)
right_arm_qpos (6), # absolute joint position
right_gripper_qpos (1)] # normalized gripper position (0: close, 1: open)
"qvel": Concat[ left_arm_qvel (6), # absolute joint velocity (rad)
left_gripper_velocity (1), # normalized gripper velocity (pos: opening, neg: closing)
right_arm_qvel (6), # absolute joint velocity (rad)
right_gripper_qvel (1)] # normalized gripper velocity (pos: opening, neg: closing)
"images": {"main": (480x640x3)} # h, w, c, dtype='uint8'
"""
class BimanualViperXEndEffectorTask(base.Task):
def __init__(self, random=None):
super().__init__(random=random)
def before_step(self, action, physics):
a_len = len(action) // 2
action_left = action[:a_len]
action_right = action[a_len:]
# set mocap position and quat
# left
np.copyto(physics.data.mocap_pos[0], action_left[:3])
np.copyto(physics.data.mocap_quat[0], action_left[3:7])
# right
np.copyto(physics.data.mocap_pos[1], action_right[:3])
np.copyto(physics.data.mocap_quat[1], action_right[3:7])
# set gripper
g_left_ctrl = unnormalize_puppet_gripper_position(action_left[7])
g_right_ctrl = unnormalize_puppet_gripper_position(action_right[7])
np.copyto(physics.data.ctrl, np.array([g_left_ctrl, -g_left_ctrl, g_right_ctrl, -g_right_ctrl]))
def initialize_robots(self, physics):
# reset joint position
physics.named.data.qpos[:16] = START_ARM_POSE
# reset mocap to align with end effector
# to obtain these numbers:
# (1) make an ee_sim env and reset to the same start_pose
# (2) get env._physics.named.data.xpos['vx300s_left/gripper_link']
# get env._physics.named.data.xquat['vx300s_left/gripper_link']
# repeat the same for right side
np.copyto(physics.data.mocap_pos[0], [-0.31718881, 0.5, 0.29525084])
np.copyto(physics.data.mocap_quat[0], [1, 0, 0, 0])
# right
np.copyto(physics.data.mocap_pos[1], np.array([0.31718881, 0.49999888, 0.29525084]))
np.copyto(physics.data.mocap_quat[1], [1, 0, 0, 0])
# reset gripper control
close_gripper_control = np.array(
[
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
PUPPET_GRIPPER_POSITION_CLOSE,
-PUPPET_GRIPPER_POSITION_CLOSE,
]
)
np.copyto(physics.data.ctrl, close_gripper_control)
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
super().initialize_episode(physics)
@staticmethod
def get_qpos(physics):
qpos_raw = physics.data.qpos.copy()
left_qpos_raw = qpos_raw[:8]
right_qpos_raw = qpos_raw[8:16]
left_arm_qpos = left_qpos_raw[:6]
right_arm_qpos = right_qpos_raw[:6]
left_gripper_qpos = [normalize_puppet_gripper_position(left_qpos_raw[6])]
right_gripper_qpos = [normalize_puppet_gripper_position(right_qpos_raw[6])]
return np.concatenate([left_arm_qpos, left_gripper_qpos, right_arm_qpos, right_gripper_qpos])
@staticmethod
def get_qvel(physics):
qvel_raw = physics.data.qvel.copy()
left_qvel_raw = qvel_raw[:8]
right_qvel_raw = qvel_raw[8:16]
left_arm_qvel = left_qvel_raw[:6]
right_arm_qvel = right_qvel_raw[:6]
left_gripper_qvel = [normalize_puppet_gripper_velocity(left_qvel_raw[6])]
right_gripper_qvel = [normalize_puppet_gripper_velocity(right_qvel_raw[6])]
return np.concatenate([left_arm_qvel, left_gripper_qvel, right_arm_qvel, right_gripper_qvel])
@staticmethod
def get_env_state(physics):
raise NotImplementedError
def get_observation(self, physics):
# note: it is important to do .copy()
obs = collections.OrderedDict()
obs["qpos"] = self.get_qpos(physics)
obs["qvel"] = self.get_qvel(physics)
obs["env_state"] = self.get_env_state(physics)
obs["images"] = {}
obs["images"]["top"] = physics.render(height=480, width=640, camera_id="top")
obs["images"]["angle"] = physics.render(height=480, width=640, camera_id="angle")
obs["images"]["vis"] = physics.render(height=480, width=640, camera_id="front_close")
# used in scripted policy to obtain starting pose
obs["mocap_pose_left"] = np.concatenate(
[physics.data.mocap_pos[0], physics.data.mocap_quat[0]]
).copy()
obs["mocap_pose_right"] = np.concatenate(
[physics.data.mocap_pos[1], physics.data.mocap_quat[1]]
).copy()
# used when replaying joint trajectory
obs["gripper_ctrl"] = physics.data.ctrl.copy()
return obs
def get_reward(self, physics):
raise NotImplementedError
class TransferCubeEndEffectorTask(BimanualViperXEndEffectorTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize box position
cube_pose = sample_box_pose()
box_start_idx = physics.model.name2id("red_box_joint", "joint")
np.copyto(physics.data.qpos[box_start_idx : box_start_idx + 7], cube_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether left gripper is holding the box
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_left_gripper = ("red_box", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
touch_right_gripper = ("red_box", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_table = ("red_box", "table") in all_contact_pairs
reward = 0
if touch_right_gripper:
reward = 1
if touch_right_gripper and not touch_table: # lifted
reward = 2
if touch_left_gripper: # attempted transfer
reward = 3
if touch_left_gripper and not touch_table: # successful transfer
reward = 4
return reward
class InsertionEndEffectorTask(BimanualViperXEndEffectorTask):
def __init__(self, random=None):
super().__init__(random=random)
self.max_reward = 4
def initialize_episode(self, physics):
"""Sets the state of the environment at the start of each episode."""
self.initialize_robots(physics)
# randomize peg and socket position
peg_pose, socket_pose = sample_insertion_pose()
def id2index(j_id):
return 16 + (j_id - 16) * 7 # first 16 is robot qpos, 7 is pose dim # hacky
peg_start_id = physics.model.name2id("red_peg_joint", "joint")
peg_start_idx = id2index(peg_start_id)
np.copyto(physics.data.qpos[peg_start_idx : peg_start_idx + 7], peg_pose)
# print(f"randomized cube position to {cube_position}")
socket_start_id = physics.model.name2id("blue_socket_joint", "joint")
socket_start_idx = id2index(socket_start_id)
np.copyto(physics.data.qpos[socket_start_idx : socket_start_idx + 7], socket_pose)
# print(f"randomized cube position to {cube_position}")
super().initialize_episode(physics)
@staticmethod
def get_env_state(physics):
env_state = physics.data.qpos.copy()[16:]
return env_state
def get_reward(self, physics):
# return whether peg touches the pin
all_contact_pairs = []
for i_contact in range(physics.data.ncon):
id_geom_1 = physics.data.contact[i_contact].geom1
id_geom_2 = physics.data.contact[i_contact].geom2
name_geom_1 = physics.model.id2name(id_geom_1, "geom")
name_geom_2 = physics.model.id2name(id_geom_2, "geom")
contact_pair = (name_geom_1, name_geom_2)
all_contact_pairs.append(contact_pair)
touch_right_gripper = ("red_peg", "vx300s_right/10_right_gripper_finger") in all_contact_pairs
touch_left_gripper = (
("socket-1", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-2", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-3", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
or ("socket-4", "vx300s_left/10_left_gripper_finger") in all_contact_pairs
)
peg_touch_table = ("red_peg", "table") in all_contact_pairs
socket_touch_table = (
("socket-1", "table") in all_contact_pairs
or ("socket-2", "table") in all_contact_pairs
or ("socket-3", "table") in all_contact_pairs
or ("socket-4", "table") in all_contact_pairs
)
peg_touch_socket = (
("red_peg", "socket-1") in all_contact_pairs
or ("red_peg", "socket-2") in all_contact_pairs
or ("red_peg", "socket-3") in all_contact_pairs
or ("red_peg", "socket-4") in all_contact_pairs
)
pin_touched = ("red_peg", "pin") in all_contact_pairs
reward = 0
if touch_left_gripper and touch_right_gripper: # touch both
reward = 1
if (
touch_left_gripper and touch_right_gripper and (not peg_touch_table) and (not socket_touch_table)
): # grasp both
reward = 2
if peg_touch_socket and (not peg_touch_table) and (not socket_touch_table): # peg and socket touching
reward = 3
if pin_touched: # successful insertion
reward = 4
return reward

View File

@@ -0,0 +1,39 @@
import numpy as np
def sample_box_pose():
x_range = [0.0, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
cube_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
cube_quat = np.array([1, 0, 0, 0])
return np.concatenate([cube_position, cube_quat])
def sample_insertion_pose():
# Peg
x_range = [0.1, 0.2]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
peg_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
peg_quat = np.array([1, 0, 0, 0])
peg_pose = np.concatenate([peg_position, peg_quat])
# Socket
x_range = [-0.2, -0.1]
y_range = [0.4, 0.6]
z_range = [0.05, 0.05]
ranges = np.vstack([x_range, y_range, z_range])
socket_position = np.random.uniform(ranges[:, 0], ranges[:, 1])
socket_quat = np.array([1, 0, 0, 0])
socket_pose = np.concatenate([socket_position, socket_quat])
return peg_pose, socket_pose

766
envs/sim_aloha/poetry.lock generated Normal file
View File

@@ -0,0 +1,766 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.1.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = false
python-versions = ">=3.7"
files = [
{file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"},
{file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"},
]
[[package]]
name = "certifi"
version = "2024.2.2"
description = "Python package for providing Mozilla's CA Bundle."
optional = false
python-versions = ">=3.6"
files = [
{file = "certifi-2024.2.2-py3-none-any.whl", hash = "sha256:dc383c07b76109f368f6106eee2b593b04a011ea4d55f652c6ca24a754d1cdd1"},
{file = "certifi-2024.2.2.tar.gz", hash = "sha256:0569859f95fc761b18b45ef421b1290a0f65f147e92a1e5eb3e635f9a5e4e66f"},
]
[[package]]
name = "charset-normalizer"
version = "3.3.2"
description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet."
optional = false
python-versions = ">=3.7.0"
files = [
{file = "charset-normalizer-3.3.2.tar.gz", hash = "sha256:f30c3cb33b24454a82faecaf01b19c18562b1e89558fb6c56de4d9118a032fd5"},
{file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:25baf083bf6f6b341f4121c2f3c548875ee6f5339300e08be3f2b2ba1721cdd3"},
{file = "charset_normalizer-3.3.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:06435b539f889b1f6f4ac1758871aae42dc3a8c0e24ac9e60c2384973ad73027"},
{file = "charset_normalizer-3.3.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9063e24fdb1e498ab71cb7419e24622516c4a04476b17a2dab57e8baa30d6e03"},
{file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6897af51655e3691ff853668779c7bad41579facacf5fd7253b0133308cf000d"},
{file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1d3193f4a680c64b4b6a9115943538edb896edc190f0b222e73761716519268e"},
{file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:cd70574b12bb8a4d2aaa0094515df2463cb429d8536cfb6c7ce983246983e5a6"},
{file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8465322196c8b4d7ab6d1e049e4c5cb460d0394da4a27d23cc242fbf0034b6b5"},
{file = "charset_normalizer-3.3.2-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a9a8e9031d613fd2009c182b69c7b2c1ef8239a0efb1df3f7c8da66d5dd3d537"},
{file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:beb58fe5cdb101e3a055192ac291b7a21e3b7ef4f67fa1d74e331a7f2124341c"},
{file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:e06ed3eb3218bc64786f7db41917d4e686cc4856944f53d5bdf83a6884432e12"},
{file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_ppc64le.whl", hash = "sha256:2e81c7b9c8979ce92ed306c249d46894776a909505d8f5a4ba55b14206e3222f"},
{file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_s390x.whl", hash = "sha256:572c3763a264ba47b3cf708a44ce965d98555f618ca42c926a9c1616d8f34269"},
{file = "charset_normalizer-3.3.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fd1abc0d89e30cc4e02e4064dc67fcc51bd941eb395c502aac3ec19fab46b519"},
{file = "charset_normalizer-3.3.2-cp310-cp310-win32.whl", hash = "sha256:3d47fa203a7bd9c5b6cee4736ee84ca03b8ef23193c0d1ca99b5089f72645c73"},
{file = "charset_normalizer-3.3.2-cp310-cp310-win_amd64.whl", hash = "sha256:10955842570876604d404661fbccbc9c7e684caf432c09c715ec38fbae45ae09"},
{file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:802fe99cca7457642125a8a88a084cef28ff0cf9407060f7b93dca5aa25480db"},
{file = "charset_normalizer-3.3.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:573f6eac48f4769d667c4442081b1794f52919e7edada77495aaed9236d13a96"},
{file = "charset_normalizer-3.3.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:549a3a73da901d5bc3ce8d24e0600d1fa85524c10287f6004fbab87672bf3e1e"},
{file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f27273b60488abe721a075bcca6d7f3964f9f6f067c8c4c605743023d7d3944f"},
{file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ceae2f17a9c33cb48e3263960dc5fc8005351ee19db217e9b1bb15d28c02574"},
{file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:65f6f63034100ead094b8744b3b97965785388f308a64cf8d7c34f2f2e5be0c4"},
{file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753f10e867343b4511128c6ed8c82f7bec3bd026875576dfd88483c5c73b2fd8"},
{file = "charset_normalizer-3.3.2-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4a78b2b446bd7c934f5dcedc588903fb2f5eec172f3d29e52a9096a43722adfc"},
{file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e537484df0d8f426ce2afb2d0f8e1c3d0b114b83f8850e5f2fbea0e797bd82ae"},
{file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:eb6904c354526e758fda7167b33005998fb68c46fbc10e013ca97f21ca5c8887"},
{file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_ppc64le.whl", hash = "sha256:deb6be0ac38ece9ba87dea880e438f25ca3eddfac8b002a2ec3d9183a454e8ae"},
{file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_s390x.whl", hash = "sha256:4ab2fe47fae9e0f9dee8c04187ce5d09f48eabe611be8259444906793ab7cbce"},
{file = "charset_normalizer-3.3.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:80402cd6ee291dcb72644d6eac93785fe2c8b9cb30893c1af5b8fdd753b9d40f"},
{file = "charset_normalizer-3.3.2-cp311-cp311-win32.whl", hash = "sha256:7cd13a2e3ddeed6913a65e66e94b51d80a041145a026c27e6bb76c31a853c6ab"},
{file = "charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl", hash = "sha256:663946639d296df6a2bb2aa51b60a2454ca1cb29835324c640dafb5ff2131a77"},
{file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:0b2b64d2bb6d3fb9112bafa732def486049e63de9618b5843bcdd081d8144cd8"},
{file = "charset_normalizer-3.3.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ddbb2551d7e0102e7252db79ba445cdab71b26640817ab1e3e3648dad515003b"},
{file = "charset_normalizer-3.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:55086ee1064215781fff39a1af09518bc9255b50d6333f2e4c74ca09fac6a8f6"},
{file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8f4a014bc36d3c57402e2977dada34f9c12300af536839dc38c0beab8878f38a"},
{file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a10af20b82360ab00827f916a6058451b723b4e65030c5a18577c8b2de5b3389"},
{file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:8d756e44e94489e49571086ef83b2bb8ce311e730092d2c34ca8f7d925cb20aa"},
{file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:90d558489962fd4918143277a773316e56c72da56ec7aa3dc3dbbe20fdfed15b"},
{file = "charset_normalizer-3.3.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:6ac7ffc7ad6d040517be39eb591cac5ff87416c2537df6ba3cba3bae290c0fed"},
{file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:7ed9e526742851e8d5cc9e6cf41427dfc6068d4f5a3bb03659444b4cabf6bc26"},
{file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:8bdb58ff7ba23002a4c5808d608e4e6c687175724f54a5dade5fa8c67b604e4d"},
{file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_ppc64le.whl", hash = "sha256:6b3251890fff30ee142c44144871185dbe13b11bab478a88887a639655be1068"},
{file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_s390x.whl", hash = "sha256:b4a23f61ce87adf89be746c8a8974fe1c823c891d8f86eb218bb957c924bb143"},
{file = "charset_normalizer-3.3.2-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:efcb3f6676480691518c177e3b465bcddf57cea040302f9f4e6e191af91174d4"},
{file = "charset_normalizer-3.3.2-cp312-cp312-win32.whl", hash = "sha256:d965bba47ddeec8cd560687584e88cf699fd28f192ceb452d1d7ee807c5597b7"},
{file = "charset_normalizer-3.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:96b02a3dc4381e5494fad39be677abcb5e6634bf7b4fa83a6dd3112607547001"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:95f2a5796329323b8f0512e09dbb7a1860c46a39da62ecb2324f116fa8fdc85c"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c002b4ffc0be611f0d9da932eb0f704fe2602a9a949d1f738e4c34c75b0863d5"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a981a536974bbc7a512cf44ed14938cf01030a99e9b3a06dd59578882f06f985"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:3287761bc4ee9e33561a7e058c72ac0938c4f57fe49a09eae428fd88aafe7bb6"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42cb296636fcc8b0644486d15c12376cb9fa75443e00fb25de0b8602e64c1714"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0a55554a2fa0d408816b3b5cedf0045f4b8e1a6065aec45849de2d6f3f8e9786"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:c083af607d2515612056a31f0a8d9e0fcb5876b7bfc0abad3ecd275bc4ebc2d5"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:87d1351268731db79e0f8e745d92493ee2841c974128ef629dc518b937d9194c"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_ppc64le.whl", hash = "sha256:bd8f7df7d12c2db9fab40bdd87a7c09b1530128315d047a086fa3ae3435cb3a8"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_s390x.whl", hash = "sha256:c180f51afb394e165eafe4ac2936a14bee3eb10debc9d9e4db8958fe36afe711"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:8c622a5fe39a48f78944a87d4fb8a53ee07344641b0562c540d840748571b811"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-win32.whl", hash = "sha256:db364eca23f876da6f9e16c9da0df51aa4f104a972735574842618b8c6d999d4"},
{file = "charset_normalizer-3.3.2-cp37-cp37m-win_amd64.whl", hash = "sha256:86216b5cee4b06df986d214f664305142d9c76df9b6512be2738aa72a2048f99"},
{file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:6463effa3186ea09411d50efc7d85360b38d5f09b870c48e4600f63af490e56a"},
{file = "charset_normalizer-3.3.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:6c4caeef8fa63d06bd437cd4bdcf3ffefe6738fb1b25951440d80dc7df8c03ac"},
{file = "charset_normalizer-3.3.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:37e55c8e51c236f95b033f6fb391d7d7970ba5fe7ff453dad675e88cf303377a"},
{file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:fb69256e180cb6c8a894fee62b3afebae785babc1ee98b81cdf68bbca1987f33"},
{file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:ae5f4161f18c61806f411a13b0310bea87f987c7d2ecdbdaad0e94eb2e404238"},
{file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b2b0a0c0517616b6869869f8c581d4eb2dd83a4d79e0ebcb7d373ef9956aeb0a"},
{file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:45485e01ff4d3630ec0d9617310448a8702f70e9c01906b0d0118bdf9d124cf2"},
{file = "charset_normalizer-3.3.2-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:eb00ed941194665c332bf8e078baf037d6c35d7c4f3102ea2d4f16ca94a26dc8"},
{file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:2127566c664442652f024c837091890cb1942c30937add288223dc895793f898"},
{file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:a50aebfa173e157099939b17f18600f72f84eed3049e743b68ad15bd69b6bf99"},
{file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_ppc64le.whl", hash = "sha256:4d0d1650369165a14e14e1e47b372cfcb31d6ab44e6e33cb2d4e57265290044d"},
{file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_s390x.whl", hash = "sha256:923c0c831b7cfcb071580d3f46c4baf50f174be571576556269530f4bbd79d04"},
{file = "charset_normalizer-3.3.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:06a81e93cd441c56a9b65d8e1d043daeb97a3d0856d177d5c90ba85acb3db087"},
{file = "charset_normalizer-3.3.2-cp38-cp38-win32.whl", hash = "sha256:6ef1d82a3af9d3eecdba2321dc1b3c238245d890843e040e41e470ffa64c3e25"},
{file = "charset_normalizer-3.3.2-cp38-cp38-win_amd64.whl", hash = "sha256:eb8821e09e916165e160797a6c17edda0679379a4be5c716c260e836e122f54b"},
{file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:c235ebd9baae02f1b77bcea61bce332cb4331dc3617d254df3323aa01ab47bd4"},
{file = "charset_normalizer-3.3.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:5b4c145409bef602a690e7cfad0a15a55c13320ff7a3ad7ca59c13bb8ba4d45d"},
{file = "charset_normalizer-3.3.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:68d1f8a9e9e37c1223b656399be5d6b448dea850bed7d0f87a8311f1ff3dabb0"},
{file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:22afcb9f253dac0696b5a4be4a1c0f8762f8239e21b99680099abd9b2b1b2269"},
{file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e27ad930a842b4c5eb8ac0016b0a54f5aebbe679340c26101df33424142c143c"},
{file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1f79682fbe303db92bc2b1136016a38a42e835d932bab5b3b1bfcfbf0640e519"},
{file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b261ccdec7821281dade748d088bb6e9b69e6d15b30652b74cbbac25e280b796"},
{file = "charset_normalizer-3.3.2-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:122c7fa62b130ed55f8f285bfd56d5f4b4a5b503609d181f9ad85e55c89f4185"},
{file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:d0eccceffcb53201b5bfebb52600a5fb483a20b61da9dbc885f8b103cbe7598c"},
{file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:9f96df6923e21816da7e0ad3fd47dd8f94b2a5ce594e00677c0013018b813458"},
{file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_ppc64le.whl", hash = "sha256:7f04c839ed0b6b98b1a7501a002144b76c18fb1c1850c8b98d458ac269e26ed2"},
{file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_s390x.whl", hash = "sha256:34d1c8da1e78d2e001f363791c98a272bb734000fcef47a491c1e3b0505657a8"},
{file = "charset_normalizer-3.3.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:ff8fa367d09b717b2a17a052544193ad76cd49979c805768879cb63d9ca50561"},
{file = "charset_normalizer-3.3.2-cp39-cp39-win32.whl", hash = "sha256:aed38f6e4fb3f5d6bf81bfa990a07806be9d83cf7bacef998ab1a9bd660a581f"},
{file = "charset_normalizer-3.3.2-cp39-cp39-win_amd64.whl", hash = "sha256:b01b88d45a6fcb69667cd6d2f7a9aeb4bf53760d7fc536bf679ec94fe9f3ff3d"},
{file = "charset_normalizer-3.3.2-py3-none-any.whl", hash = "sha256:3e4d1f6587322d2788836a99c69062fbb091331ec940e02d12d179c1d53e25fc"},
]
[[package]]
name = "colorama"
version = "0.4.6"
description = "Cross-platform colored terminal text."
optional = false
python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7"
files = [
{file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"},
{file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"},
]
[[package]]
name = "dm-control"
version = "1.0.14"
description = "Continuous control environments and MuJoCo Python bindings."
optional = false
python-versions = ">=3.8"
files = [
{file = "dm_control-1.0.14-py3-none-any.whl", hash = "sha256:883c63244a7ebf598700a97564ed19fffd3479ca79efd090aed881609cdb9fc6"},
{file = "dm_control-1.0.14.tar.gz", hash = "sha256:def1ece747b6f175c581150826b50f1a6134086dab34f8f3fd2d088ea035cf3d"},
]
[package.dependencies]
absl-py = ">=0.7.0"
dm-env = "*"
dm-tree = "!=0.1.2"
glfw = "*"
labmaze = "*"
lxml = "*"
mujoco = ">=2.3.7"
numpy = ">=1.9.0"
protobuf = ">=3.19.4"
pyopengl = ">=3.1.4"
pyparsing = ">=3.0.0"
requests = "*"
scipy = "*"
setuptools = "!=50.0.0"
tqdm = "*"
[package.extras]
hdf5 = ["h5py"]
[[package]]
name = "dm-env"
version = "1.6"
description = "A Python interface for Reinforcement Learning environments."
optional = false
python-versions = ">=3.7"
files = [
{file = "dm-env-1.6.tar.gz", hash = "sha256:a436eb1c654c39e0c986a516cee218bea7140b510fceff63f97eb4fcff3d93de"},
{file = "dm_env-1.6-py3-none-any.whl", hash = "sha256:0eabb6759dd453b625e041032f7ae0c1e87d4eb61b6a96b9ca586483837abf29"},
]
[package.dependencies]
absl-py = "*"
dm-tree = "*"
numpy = "*"
[[package]]
name = "dm-tree"
version = "0.1.8"
description = "Tree is a library for working with nested data structures."
optional = false
python-versions = "*"
files = [
{file = "dm-tree-0.1.8.tar.gz", hash = "sha256:0fcaabbb14e7980377439e7140bd05552739ca5e515ecb3119f234acee4b9430"},
{file = "dm_tree-0.1.8-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:35cc164a79336bfcfafb47e5f297898359123bbd3330c1967f0c4994f9cf9f60"},
{file = "dm_tree-0.1.8-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39070ba268c0491af9fe7a58644d99e8b4f2cde6e5884ba3380bddc84ed43d5f"},
{file = "dm_tree-0.1.8-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2869228d9c619074de501a3c10dc7f07c75422f8fab36ecdcb859b6f1b1ec3ef"},
{file = "dm_tree-0.1.8-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d20f2faa3672b52e5013f4077117bfb99c4cfc0b445d3bde1584c34032b57436"},
{file = "dm_tree-0.1.8-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5483dca4d7eb1a0d65fe86d3b6a53ae717face83c1f17e0887b1a4a64ae5c410"},
{file = "dm_tree-0.1.8-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:1d7c26e431fc93cc7e0cba867eb000db6a05f6f2b25af11ac4e9dada88fc5bca"},
{file = "dm_tree-0.1.8-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4d714371bb08839e4e5e29024fc95832d9affe129825ef38836b143028bd144"},
{file = "dm_tree-0.1.8-cp310-cp310-win_amd64.whl", hash = "sha256:d40fa4106ca6edc66760246a08f500ec0c85ef55c762fb4a363f6ee739ba02ee"},
{file = "dm_tree-0.1.8-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:ad16ceba90a56ec47cf45b21856d14962ac314787975ef786efb5e6e9ca75ec7"},
{file = "dm_tree-0.1.8-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:803bfc53b4659f447ac694dbd04235f94a73ef7c1fd1e0df7c84ac41e0bc963b"},
{file = "dm_tree-0.1.8-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:378cc8ad93c5fe3590f405a309980721f021c790ca1bdf9b15bb1d59daec57f5"},
{file = "dm_tree-0.1.8-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1607ce49aa42f010d1e5e616d92ce899d66835d4d8bea49679582435285515de"},
{file = "dm_tree-0.1.8-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:343a4a4ebaa127451ff971254a4be4084eb4bdc0b2513c32b46f6f728fd03f9e"},
{file = "dm_tree-0.1.8-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:fa42a605d099ee7d41ba2b5fb75e21423951fd26e5d50583a00471238fb3021d"},
{file = "dm_tree-0.1.8-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:83b7764de0d855338abefc6e3ee9fe40d301668310aa3baea3f778ff051f4393"},
{file = "dm_tree-0.1.8-cp311-cp311-win_amd64.whl", hash = "sha256:a5d819c38c03f0bb5b3b3703c60e4b170355a0fc6b5819325bf3d4ceb3ae7e80"},
{file = "dm_tree-0.1.8-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:ea9e59e0451e7d29aece402d9f908f2e2a80922bcde2ebfd5dcb07750fcbfee8"},
{file = "dm_tree-0.1.8-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:94d3f0826311f45ee19b75f5b48c99466e4218a0489e81c0f0167bda50cacf22"},
{file = "dm_tree-0.1.8-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:435227cf3c5dc63f4de054cf3d00183790bd9ead4c3623138c74dde7f67f521b"},
{file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:09964470f76a5201aff2e8f9b26842976de7889300676f927930f6285e256760"},
{file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:75c5d528bb992981c20793b6b453e91560784215dffb8a5440ba999753c14ceb"},
{file = "dm_tree-0.1.8-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0a94aba18a35457a1b5cd716fd7b46c5dafdc4cf7869b4bae665b91c4682a8e"},
{file = "dm_tree-0.1.8-cp312-cp312-win_amd64.whl", hash = "sha256:96a548a406a6fb15fe58f6a30a57ff2f2aafbf25f05afab00c8f5e5977b6c715"},
{file = "dm_tree-0.1.8-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:8c60a7eadab64c2278861f56bca320b2720f163dca9d7558103c3b77f2416571"},
{file = "dm_tree-0.1.8-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:af4b3d372f2477dcd89a6e717e4a575ca35ccc20cc4454a8a4b6f8838a00672d"},
{file = "dm_tree-0.1.8-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:de287fabc464b8734be251e46e06aa9aa1001f34198da2b6ce07bd197172b9cb"},
{file = "dm_tree-0.1.8-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:054b461f8176f4bce7a21f7b1870f873a1ced3bdbe1282c816c550bb43c71fa6"},
{file = "dm_tree-0.1.8-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2f7915660f59c09068e428613c480150180df1060561fd0d1470684ae7007bd1"},
{file = "dm_tree-0.1.8-cp37-cp37m-win_amd64.whl", hash = "sha256:b9f89a454e98806b44fe9d40ec9eee61f848388f7e79ac2371a55679bd5a3ac6"},
{file = "dm_tree-0.1.8-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:0e9620ccf06393eb6b613b5e366469304622d4ea96ae6540b28a33840e6c89cf"},
{file = "dm_tree-0.1.8-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:b095ba4f8ca1ba19350fd53cf1f8f3eb0bd406aa28af64a6dfc86707b32a810a"},
{file = "dm_tree-0.1.8-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:b9bd9b9ccb59409d33d51d84b7668010c04c2af7d4a371632874c1ca356cff3d"},
{file = "dm_tree-0.1.8-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0d3172394079a86c3a759179c65f64c48d1a42b89495fcf38976d11cc3bb952c"},
{file = "dm_tree-0.1.8-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d1612fcaecd79023dbc6a6ae48d51a80beb5c385d6f3f6d71688e57bc8d07de8"},
{file = "dm_tree-0.1.8-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c5c8c12e3fda754ef6af94161bacdaeda816d941995fac415d6855c6c386af68"},
{file = "dm_tree-0.1.8-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:694c3654cfd2a81552c08ec66bb5c4a3d48fa292b9a181880fb081c36c5b9134"},
{file = "dm_tree-0.1.8-cp38-cp38-win_amd64.whl", hash = "sha256:bb2d109f42190225112da899b9f3d46d0d5f26aef501c61e43529fe9322530b5"},
{file = "dm_tree-0.1.8-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:d16e1f2a073604cfcc09f7131ae8d534674f43c3aef4c25742eae295bc60d04f"},
{file = "dm_tree-0.1.8-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:250b692fb75f45f02e2f58fbef9ab338904ef334b90557565621fa251df267cf"},
{file = "dm_tree-0.1.8-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:81fce77f22a302d7a5968aebdf4efafef4def7ce96528719a354e6990dcd49c7"},
{file = "dm_tree-0.1.8-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f7ac31b9aecccb2c6e1ab29706f6ded3eba0c2c69c770322c9c685929c3d6afb"},
{file = "dm_tree-0.1.8-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1fe962015b2fe1282892b28ebe962faed53c7f98d942da9a4625cbf27baef913"},
{file = "dm_tree-0.1.8-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:28c52cbf4f8b3dbd0beaedf44f69fa85eec5e9dede612e08035e06ada6ec9426"},
{file = "dm_tree-0.1.8-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:181c35521d480d0365f39300542cb6cd7fd2b77351bb43d7acfda15aef63b317"},
{file = "dm_tree-0.1.8-cp39-cp39-win_amd64.whl", hash = "sha256:8ed3564abed97c806db122c2d3e1a2b64c74a63debe9903aad795167cc301368"},
]
[[package]]
name = "etils"
version = "1.7.0"
description = "Collection of common python utils"
optional = false
python-versions = ">=3.10"
files = [
{file = "etils-1.7.0-py3-none-any.whl", hash = "sha256:61af8f7c242171de15e22e5da02d527cb9e677d11f8bcafe18fcc3548eee3e60"},
{file = "etils-1.7.0.tar.gz", hash = "sha256:97b68fd25e185683215286ef3a54e38199b6245f5fe8be6bedc1189be4256350"},
]
[package.dependencies]
fsspec = {version = "*", optional = true, markers = "extra == \"epath\""}
importlib_resources = {version = "*", optional = true, markers = "extra == \"epath\""}
typing_extensions = {version = "*", optional = true, markers = "extra == \"epy\""}
zipp = {version = "*", optional = true, markers = "extra == \"epath\""}
[package.extras]
all = ["etils[array-types]", "etils[eapp]", "etils[ecolab]", "etils[edc]", "etils[enp]", "etils[epath-gcs]", "etils[epath-s3]", "etils[epath]", "etils[epy]", "etils[etqdm]", "etils[etree-dm]", "etils[etree-jax]", "etils[etree-tf]", "etils[etree]"]
array-types = ["etils[enp]"]
dev = ["chex", "dataclass_array", "optree", "pyink", "pylint (>=2.6.0)", "pytest", "pytest-subtests", "pytest-xdist", "torch"]
docs = ["etils[all,dev]", "sphinx-apitree[ext]"]
eapp = ["absl-py", "etils[epy]", "simple_parsing"]
ecolab = ["etils[enp]", "etils[epy]", "etils[etree]", "jupyter", "mediapy", "numpy", "packaging", "protobuf"]
edc = ["etils[epy]"]
enp = ["etils[epy]", "numpy"]
epath = ["etils[epy]", "fsspec", "importlib_resources", "typing_extensions", "zipp"]
epath-gcs = ["etils[epath]", "gcsfs"]
epath-s3 = ["etils[epath]", "s3fs"]
epy = ["typing_extensions"]
etqdm = ["absl-py", "etils[epy]", "tqdm"]
etree = ["etils[array-types]", "etils[enp]", "etils[epy]", "etils[etqdm]"]
etree-dm = ["dm-tree", "etils[etree]"]
etree-jax = ["etils[etree]", "jax[cpu]"]
etree-tf = ["etils[etree]", "tensorflow"]
lazy-imports = ["etils[ecolab]"]
[[package]]
name = "fsspec"
version = "2024.3.1"
description = "File-system specification"
optional = false
python-versions = ">=3.8"
files = [
{file = "fsspec-2024.3.1-py3-none-any.whl", hash = "sha256:918d18d41bf73f0e2b261824baeb1b124bcf771767e3a26425cd7dec3332f512"},
{file = "fsspec-2024.3.1.tar.gz", hash = "sha256:f39780e282d7d117ffb42bb96992f8a90795e4d0fb0f661a70ca39fe9c43ded9"},
]
[package.extras]
abfs = ["adlfs"]
adl = ["adlfs"]
arrow = ["pyarrow (>=1)"]
dask = ["dask", "distributed"]
devel = ["pytest", "pytest-cov"]
dropbox = ["dropbox", "dropboxdrivefs", "requests"]
full = ["adlfs", "aiohttp (!=4.0.0a0,!=4.0.0a1)", "dask", "distributed", "dropbox", "dropboxdrivefs", "fusepy", "gcsfs", "libarchive-c", "ocifs", "panel", "paramiko", "pyarrow (>=1)", "pygit2", "requests", "s3fs", "smbprotocol", "tqdm"]
fuse = ["fusepy"]
gcs = ["gcsfs"]
git = ["pygit2"]
github = ["requests"]
gs = ["gcsfs"]
gui = ["panel"]
hdfs = ["pyarrow (>=1)"]
http = ["aiohttp (!=4.0.0a0,!=4.0.0a1)"]
libarchive = ["libarchive-c"]
oci = ["ocifs"]
s3 = ["s3fs"]
sftp = ["paramiko"]
smb = ["smbprotocol"]
ssh = ["paramiko"]
tqdm = ["tqdm"]
[[package]]
name = "glfw"
version = "2.7.0"
description = "A ctypes-based wrapper for GLFW3."
optional = false
python-versions = "*"
files = [
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:bd82849edcceda4e262bd1227afaa74b94f9f0731c1197863cd25c15bfc613fc"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_11_0_arm64.whl", hash = "sha256:56ea163c964bb0bc336def2d6a6a1bd42f9db4b870ef834ac77d7b7ee68b8dfc"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_i686.whl", hash = "sha256:463aab9e5567c83d8120556b3a845807c60950ed0218fc1283368f46f5ece331"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_x86_64.whl", hash = "sha256:a6f54188dfc349e5426b0ada84843f6eb35a3811d8dbf57ae49c448e7d683bb4"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_aarch64.whl", hash = "sha256:e33568b0aba2045a3d7555f22fcf83fafcacc7c2fc4cb995741894ea51e43ab6"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_x86_64.whl", hash = "sha256:d8630dd9673860c427abde5b79bbc348e02eccde8a3f2a802c5a2a4fb5d79fb8"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win32.whl", hash = "sha256:ff92d14ac1c7afa9c5deb495c335b485868709880e6e080e99ace7026d74c756"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win_amd64.whl", hash = "sha256:20d4b31a5a6a61fb787b25f8408204e0e248313cc500953071d13d30a2e5cc9d"},
{file = "glfw-2.7.0.tar.gz", hash = "sha256:0e209ad38fa8c5be67ca590d7b17533d95ad1eb57d0a3f07b98131db69b79000"},
]
[package.extras]
preview = ["glfw-preview"]
[[package]]
name = "idna"
version = "3.6"
description = "Internationalized Domain Names in Applications (IDNA)"
optional = false
python-versions = ">=3.5"
files = [
{file = "idna-3.6-py3-none-any.whl", hash = "sha256:c05567e9c24a6b9faaa835c4821bad0590fbb9d5779e7caa6e1cc4978e7eb24f"},
{file = "idna-3.6.tar.gz", hash = "sha256:9ecdbbd083b06798ae1e86adcbfe8ab1479cf864e4ee30fe4e46a003d12491ca"},
]
[[package]]
name = "importlib-resources"
version = "6.4.0"
description = "Read resources from Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "importlib_resources-6.4.0-py3-none-any.whl", hash = "sha256:50d10f043df931902d4194ea07ec57960f66a80449ff867bfe782b4c486ba78c"},
{file = "importlib_resources-6.4.0.tar.gz", hash = "sha256:cdb2b453b8046ca4e3798eb1d84f3cce1446a0e8e7b5ef4efb600f19fc398145"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["jaraco.test (>=5.4)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-mypy", "pytest-ruff (>=0.2.1)", "zipp (>=3.17)"]
[[package]]
name = "labmaze"
version = "1.0.6"
description = "LabMaze: DeepMind Lab's text maze generator."
optional = false
python-versions = "*"
files = [
{file = "labmaze-1.0.6-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:b2ddef976dfd8d992b19cfa6c633f2eba7576d759c2082da534e3f727479a84a"},
{file = "labmaze-1.0.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:157efaa93228c8ccce5cae337902dd652093e0fba9d3a0f6506e4bee272bb66f"},
{file = "labmaze-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b3ce98b9541c5fe6a306e411e7d018121dd646f2c9978d763fad86f9f30c5f57"},
{file = "labmaze-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4e6433bd49bc541791de8191040526fddfebb77151620eb04203453f43ee486a"},
{file = "labmaze-1.0.6-cp310-cp310-win_amd64.whl", hash = "sha256:6a507fc35961f1b1479708e2716f65e0d0611cefb55f31a77be29ce2339b6fef"},
{file = "labmaze-1.0.6-cp311-cp311-macosx_10_12_x86_64.whl", hash = "sha256:a0c2cb9dec971814ea9c5d7150af15fa3964482131fa969e0afb94bd224348af"},
{file = "labmaze-1.0.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:2c6ba9538d819543f4be448d36b4926a3881e53646a2b331ebb5a1f353047d05"},
{file = "labmaze-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:70635d1cdb0147a02efb6b3f607a52cdc51723bc3dcc42717a0d4ef55fa0a987"},
{file = "labmaze-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ff472793238bd9b6dabea8094594d6074ad3c111455de3afcae72f6c40c6817e"},
{file = "labmaze-1.0.6-cp311-cp311-win_amd64.whl", hash = "sha256:2317e65e12fa3d1abecda7e0488dab15456cee8a2e717a586bfc8f02a91579e7"},
{file = "labmaze-1.0.6-cp312-cp312-macosx_10_12_x86_64.whl", hash = "sha256:e36b6fadcd78f22057b597c1c77823e806a0987b3bdfbf850e14b6b5b502075e"},
{file = "labmaze-1.0.6-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:d1a4f8de29c2c3d7f14163759b69cd3f237093b85334c983619c1db5403a223b"},
{file = "labmaze-1.0.6-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a394f8bb857fcaa2884b809d63e750841c2662a106cfe8c045f2112d201ac7d5"},
{file = "labmaze-1.0.6-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0d17abb69d4dfc56183afb5c317e8b2eaca0587abb3aabd2326efd3143c81f4e"},
{file = "labmaze-1.0.6-cp312-cp312-win_amd64.whl", hash = "sha256:5af997598cc46b1929d1c5a1febc32fd56c75874fe481a2a5982c65cee8450c9"},
{file = "labmaze-1.0.6-cp37-cp37m-macosx_10_12_x86_64.whl", hash = "sha256:a4c5bc6e56baa55ce63b97569afec2f80cab0f6b952752a131e1f83eed190a53"},
{file = "labmaze-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3955f24fe5f708e1e97495b4cfe284b70ae4fd51be5e17b75a6fc04ffbd67bca"},
{file = "labmaze-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ed96ddc0bb8d66df36428c94db83949fd84a15867e8250763a4c5e3d82104c54"},
{file = "labmaze-1.0.6-cp37-cp37m-win_amd64.whl", hash = "sha256:3bd0458a29e55aa09f146e28a168d2e00b8ccf19e2259a3f71154cfff3536b1d"},
{file = "labmaze-1.0.6-cp38-cp38-macosx_10_12_x86_64.whl", hash = "sha256:33f5154edc83dff55a150e54b60c8582fdafc7ec45195049809cbcc01f5e8f34"},
{file = "labmaze-1.0.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:0971055ef2a5f7d8517fdc42b67c057093698f1eb911f46faa7018867b73fcc9"},
{file = "labmaze-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:de18d09680007302abf49111f3fe822d8435e4fbc4468b9ec07d50a78e267865"},
{file = "labmaze-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f18126066db2218a52853c7dd490b4c3d8129fc22eb3a47eb23007524b911d53"},
{file = "labmaze-1.0.6-cp38-cp38-win_amd64.whl", hash = "sha256:f9aef09a76877342bb4d634b7e05f43b038a49c4f34adfb8f1b8ac57c29472f2"},
{file = "labmaze-1.0.6-cp39-cp39-macosx_10_12_x86_64.whl", hash = "sha256:5dd28899418f1b8b1c7d1e1b40a4593150a7cfa95ca91e23860b9785b82cc0ee"},
{file = "labmaze-1.0.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:965569f37ee33090b4d4b3aa5aa7c9dcc4f62e2ae5d761e7f73ec76fc9d8aa96"},
{file = "labmaze-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:05eccfa98c0e781bc9f939076ae600b2e25ca736e123f2a530606aedec3b531c"},
{file = "labmaze-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:bee8c94e0fb3fc2d8180214947245c1d74a3489349a9da90b868296e77a521e9"},
{file = "labmaze-1.0.6-cp39-cp39-win_amd64.whl", hash = "sha256:d486e9ca3a335ad628e3bd48a09c42f1aa5f51040952ef0fe32507afedcd694b"},
{file = "labmaze-1.0.6.tar.gz", hash = "sha256:2e8de7094042a77d6972f1965cf5c9e8f971f1b34d225752f343190a825ebe73"},
]
[package.dependencies]
absl-py = "*"
numpy = ">=1.8.0"
setuptools = "!=50.0.0"
[[package]]
name = "lxml"
version = "5.1.1"
description = "Powerful and Pythonic XML processing library combining libxml2/libxslt with the ElementTree API."
optional = false
python-versions = ">=3.6"
files = [
{file = "lxml-5.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:9cc30dc3c49ea914fa62ea73b57198b541cf2cd522fcf2b9559f99a24df769bb"},
{file = "lxml-5.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f1d0824e3ddb969fe1337b1bc45cf0bec8095b342f36903f41a74b7769cc8c73"},
{file = "lxml-5.1.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4958c378d9387c45ef8c4859495cf6be76f863e4e3b31494f6ec7f2c48d3b8e3"},
{file = "lxml-5.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:aff34295a6c87638a1f1905355cf3a97e4026c45c0cf3bb6ed6bc35b885b4a33"},
{file = "lxml-5.1.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b174885fd2cabd1ad48585296f495e25d607f02db99668c08b2afaceb668e21b"},
{file = "lxml-5.1.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:1b0611bba10d6f5467b86673e8f6bba4de0d00f7d111eea843bc872abfe11b5c"},
{file = "lxml-5.1.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:adff469b7dbfe9f3babc9e4479449ee97085ba70ac492fbe5f0f7217940c6731"},
{file = "lxml-5.1.1-cp310-cp310-win32.whl", hash = "sha256:99bcdf665576a26b44c7ce767d76b769a4418b0a13cda8300b26fb7b2647bd5b"},
{file = "lxml-5.1.1-cp310-cp310-win_amd64.whl", hash = "sha256:3da8db291568c27b2bb248dcfc8838ca3149f373a24e204bcd1c2c89e2813d14"},
{file = "lxml-5.1.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:906966babd374fdfe46e130fc656488003f0d0d63b7cba612aa5a796c8804283"},
{file = "lxml-5.1.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:9c03f3715c68fc707d9383d56e482d95d198ba07cb3dad4aee9e5a5ca06b2536"},
{file = "lxml-5.1.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d26243d994d4077a50056e9008848e5b421be0c6f0fd4e932a9463e1d89fc42b"},
{file = "lxml-5.1.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2de00750318ae6869b9dfa6429a4f82b8ecad043049414547474d09db549c2ee"},
{file = "lxml-5.1.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:29b2771b4eec4e85063f10294facdd9829d010e6cc9668040d0cf936dc56733a"},
{file = "lxml-5.1.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:d9358f7268c161dc0a1c3216018f26c04954b5dd47ba6dead79da6598f4725d4"},
{file = "lxml-5.1.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8a943826e7a9254eed661a7134fcde3c832a9fecd989d0f47c6e08c7b769cb2c"},
{file = "lxml-5.1.1-cp311-cp311-win32.whl", hash = "sha256:74d0967c6f91eec6fe91159f9e8ccb3720fa0fbf9f462109c7bef62550df397c"},
{file = "lxml-5.1.1-cp311-cp311-win_amd64.whl", hash = "sha256:26974096654241df08a30dc2eb0e139c1ad5653660aa4b2ced66000230e96c14"},
{file = "lxml-5.1.1-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:55e13a19829dcdbf0c5233062977aeb6daf72e65124909128045976f659164e8"},
{file = "lxml-5.1.1-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:adedfb61be862f48907218e3a24bf051fd2ecca53358f3958b0bdb17d7881c20"},
{file = "lxml-5.1.1-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:77425482e4311d1cff119a2b5ab26c52ec209d2a3d728a54db3223ab91995e20"},
{file = "lxml-5.1.1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1d380f183bd03ab827899753ea96dabe27d2025eb0bfd4f2ac0eee4afa0f351d"},
{file = "lxml-5.1.1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f8682af96b5ad5093aab9eee5e4ff24cb7a9796c78699d914dd456ebfe7484a6"},
{file = "lxml-5.1.1-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:68eed33377a9925aed7ba56c8611d50aaa1e45638c07a92b4b4b0a0436cc2dd2"},
{file = "lxml-5.1.1-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:c7c1d2f6e9c7a1c4478146ee38d16dbe0eb3be998424bc0f01346c671c38b86d"},
{file = "lxml-5.1.1-cp312-cp312-win32.whl", hash = "sha256:81107c8de3e463052ae8fd05fd31b97c371c7a9ce4a189b8bb5f45b0b3545fb9"},
{file = "lxml-5.1.1-cp312-cp312-win_amd64.whl", hash = "sha256:0e46181d15fae102c53621bed9356b7a599a1e837b978c934a350dd00842b1d9"},
{file = "lxml-5.1.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:48dd28b9f410329de709a4bb6169c58f2cd8bff25f5a48d647678ec9b8a40c65"},
{file = "lxml-5.1.1-cp36-cp36m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bf7e57dbe7b3c605e63849d9c8dae246a6ab9002223c57cd3f3dec7c3a0a8e6d"},
{file = "lxml-5.1.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:5020b3081030b5cfc8149eee231167aea4ff68df73a610e1d542809e1f11fde7"},
{file = "lxml-5.1.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:77842b79b63c83c04dcfe2f045c78e15e4d97c86838eabd2e6518c1ed97e3900"},
{file = "lxml-5.1.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:666432274881cb2535e71dbe745e08ef10fe25c81fbb1a6b1e3c973177823b0c"},
{file = "lxml-5.1.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:a103426e809640a2d985062d2f4b28db2f0fe4469ff72a67cb31fa70613158f1"},
{file = "lxml-5.1.1-cp36-cp36m-win32.whl", hash = "sha256:95a51324a55000c55f4ab79e1f7f1e0bc42b7a24e39633f79542753023a9d4b7"},
{file = "lxml-5.1.1-cp36-cp36m-win_amd64.whl", hash = "sha256:bd46b5b19ac969de8e87fb3d04414641d12ee489e2ea6cc75344087829b31c63"},
{file = "lxml-5.1.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:59ca75cfcf646ff64aa19ca4e7fd2a0fde77268d5a87856525d9e0b69b77d0c4"},
{file = "lxml-5.1.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d55ddc73dec971277b181a6d1a6abdd34f50e4511e1e60f6b4ebe22cbaad05bb"},
{file = "lxml-5.1.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56f1e813ff660d031c77edba90a068d57e47ae93a9e811330fc88946fa68af9a"},
{file = "lxml-5.1.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:43f21b5929185fa4560836942020bb00a0fcdec9f67be98cac1a4b99501757c1"},
{file = "lxml-5.1.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:1528b37e83c3aeecb438e76e5be6279b353275560125a9c3f4d74642c5f110f9"},
{file = "lxml-5.1.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:2992480a25434d2df31413136ef87effab14d43b07f1f54c5012c4f6c7530144"},
{file = "lxml-5.1.1-cp37-cp37m-win32.whl", hash = "sha256:1d0270d33fbde6e1c6758ff58e2e284144f5331aa05dfe7f44ceafdf4e9d31aa"},
{file = "lxml-5.1.1-cp37-cp37m-win_amd64.whl", hash = "sha256:dec3491aa69a91ed07f5e6bc033e2b1a9424447ad5312ee69ac973e94d79083a"},
{file = "lxml-5.1.1-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:87b67d8620c2725d666e5d88ddba56bcdb1f52211a2e7d22f951b67c35f7f627"},
{file = "lxml-5.1.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:5bd2595ebe95214446e00a1ab94571f778b126e17736ea222c07505c4e092289"},
{file = "lxml-5.1.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bfbdadc3cfe552331ecb0bbdcabf148d1697c73aa4321151e0e6c1704eeb76a7"},
{file = "lxml-5.1.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:52358249292bc155af681a9240ec3d944c1195f0124aa10ec4e3635adc1e10a1"},
{file = "lxml-5.1.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:036b36c48cd775e4fd2084b34ae62ffeefa7a01f955f5a5b816f9257c308cfc0"},
{file = "lxml-5.1.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:f05ab8cea65363d0cc7ce818f42407504b6d94ca885b4cde0270f021e2f4ef61"},
{file = "lxml-5.1.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:d94a28c16cc430b68c374b37b8bb536ba5f0a4a080be0e1daa8310c44a00a75c"},
{file = "lxml-5.1.1-cp38-cp38-win32.whl", hash = "sha256:9113fe65a62f834b8e994c8f48e7b2179bf81878c0ec80ad7feba51ab9417663"},
{file = "lxml-5.1.1-cp38-cp38-win_amd64.whl", hash = "sha256:acff17e0cd5344677757a152631d8411efac6a84e4476d60123a9b33f5d6c511"},
{file = "lxml-5.1.1-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:a94a97380ad689d751eb0a1e1ccd2a0622c5141771a31abe9a16075f80027e95"},
{file = "lxml-5.1.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:d1f4d37b3f8d2d44493edce3d65ac987127bababd8ae208a6f0d7d260852346e"},
{file = "lxml-5.1.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3c5940f188189956ccb3d1adb413001ada79f2d2b81087d2612a0cc4a1197eed"},
{file = "lxml-5.1.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50007f4e94dc4e38030487a8b6c4af87a2d51ed059c7b74b29e3dd937cb1dfe1"},
{file = "lxml-5.1.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a305d0469177fd78a0a9aa2231c60218266bb85d4b7955f9b67dab628c9267fd"},
{file = "lxml-5.1.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:13b73d78a8023203722cf98e9ea0b222da83110d1d5ef437ef8782a7755b4586"},
{file = "lxml-5.1.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:bc6904519dd1f92eb82f7d49814a33bbc444d0b66b1438e76daf3f79ef4aa38f"},
{file = "lxml-5.1.1-cp39-cp39-win32.whl", hash = "sha256:04ef231dde88294a5499f61a74cdc42af97d8d5ecec1b0a645d1c7d436942789"},
{file = "lxml-5.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:071e5123d1eca861708c4be5b54e4d88923fa33fab3aa02722e907518b07071c"},
{file = "lxml-5.1.1-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:19c6bc7476eeac4598ff925ae98597610109e21af4cd7ab1e060efcfc4b1c6e2"},
{file = "lxml-5.1.1-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20cd17eb21f5ae54da96791c49e1fbd3327bf66b2c00556cdf8d0552c2270f92"},
{file = "lxml-5.1.1-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a02ed1ebc469734dbfed5b688f709334de19e7a333cba7ae187b17d2b2c1d4ff"},
{file = "lxml-5.1.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:161838cb95c97e8d76d01e544a3570b52ab6b863f4897a90e1f073bb110a75ba"},
{file = "lxml-5.1.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d1abbf2249467a37da45fb2d7ff37e578dfc9813f142800e58db9da761cb7899"},
{file = "lxml-5.1.1-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:6c49eb5deaed1990fde5b5d80d6800aec1b5fd6113346b5f11068d988f68f2c4"},
{file = "lxml-5.1.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:60ceffdca5d637fe8ee95c7f06733a6c9646e07da80997efe3af2d4b4f366e36"},
{file = "lxml-5.1.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a76a7b35e7660c74eb3f943c19f5f78c882dceab890cf8017027b6100b79ad8e"},
{file = "lxml-5.1.1-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5dcb373720b70aa05419e508265dd86f06886ca0388967f6f024fbc4d551379f"},
{file = "lxml-5.1.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3641bc124b037921de4220538a5ebb52354fd2799fc2bbfb335d28096063c7d6"},
{file = "lxml-5.1.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3a6e9b34f59c9755aa279c652e1c48c333c665d05a88afcd8e5ff0bde86f3b14"},
{file = "lxml-5.1.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:318847c165063549c8fda6b162a0d068689b10deb825cb3859caef69fddaaaff"},
{file = "lxml-5.1.1.tar.gz", hash = "sha256:42a8aa957e98bd8b884a8142175ec24ce4ef0a57760e8879f193bfe64b757ca9"},
]
[package.extras]
cssselect = ["cssselect (>=0.7)"]
html5 = ["html5lib"]
htmlsoup = ["BeautifulSoup4"]
source = ["Cython (>=3.0.9)"]
[[package]]
name = "mujoco"
version = "3.1.3"
description = "MuJoCo Physics Simulator"
optional = false
python-versions = ">=3.8"
files = [
{file = "mujoco-3.1.3-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:1a07e33443ca88c77128336e550502c58721e37b3830af29f0118311c17d826e"},
{file = "mujoco-3.1.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:da442c45fa08cf7f307a6f2484ff382b90714b9f52aaceffd5fcb8536dbdc11c"},
{file = "mujoco-3.1.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec08dbfddef6e4c6d7b03685b929ed134e8eb9d0dbc788752ff54216b7b3544e"},
{file = "mujoco-3.1.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f1578279ff581ed1c70893cc16ecf48a048a14568e9e64b446a2d32c22b1154c"},
{file = "mujoco-3.1.3-cp310-cp310-win_amd64.whl", hash = "sha256:9a359e7787e1d0bbdb9fafeb31df61261a4cdc42d0a5d77c91fbe57c63e4c6fd"},
{file = "mujoco-3.1.3-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:b070805d65ee6b708ddf1a16a16fc2073ce2d1eea8ea26352b8aee4071de274c"},
{file = "mujoco-3.1.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:d789a95150cf1bef21e3a3431c26263730b0437ec3b4794b2eed0f900185746e"},
{file = "mujoco-3.1.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6661aa27c81be338ce0973ba6e83f655ff3cc023ea9d62398f130b46478f708a"},
{file = "mujoco-3.1.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f79dc6134c90a7274d2663c07bea6d45629ea52ce40bf6722c5d506df909b4b9"},
{file = "mujoco-3.1.3-cp311-cp311-win_amd64.whl", hash = "sha256:b1df674d9486e1bd2e93fb69009d8db4adcf4b3b7edc92da5c98d1c6a2ea7a28"},
{file = "mujoco-3.1.3-cp312-cp312-macosx_10_16_x86_64.whl", hash = "sha256:51841750310a1c4b5e7c7f19d28fe5e3deea0e2c7cc60ebab33c2f07360b1700"},
{file = "mujoco-3.1.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:fe4318af5b14ea39bc5b8892c69797a1a9deb02199178814be16abb5611308fb"},
{file = "mujoco-3.1.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:079f293a56c2b3aa6b4101c3822ee5587b5cc9bf35028afdd1f2128db102ad20"},
{file = "mujoco-3.1.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d4c120414bf89a11538e3f5eb1de6bcd6c4aeade9775ecad3e4eea27d88e1492"},
{file = "mujoco-3.1.3-cp312-cp312-win_amd64.whl", hash = "sha256:7fc9d69383dc0f7c4b775b2be829a065fb78dca743a25f9d864d52174c916b2b"},
{file = "mujoco-3.1.3-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:5a29004079a40d23836228647bae9ea41f77fd7e407e8ad642dc72054e5a099e"},
{file = "mujoco-3.1.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:c1d1e083d8825faf9e2609d4e749cc5629ed7735374ed68eb3dde63dd0e4fe73"},
{file = "mujoco-3.1.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cc267cf0de8de3c8b317f7c12b2d7a484a7f462263f8ce4c8ae18e9d6817897"},
{file = "mujoco-3.1.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d67a2aae8d5d58f7ac41d0bcffcd745955415887843bc34da8e3d794b46afbae"},
{file = "mujoco-3.1.3-cp38-cp38-win_amd64.whl", hash = "sha256:8ddb9a07d5ad59c67f2d7e79568cba27ad68cf2284a68370f2054dce2e6e4128"},
{file = "mujoco-3.1.3-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:acdc761e8fa7d4bfb9f262b8886dbb3dd41a957c3ef7ec126aae3342f68b1293"},
{file = "mujoco-3.1.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:49bad0da02ebf67ab37a6f6fe435dfc6339f0b46b51b452ee79aaffa5b73659b"},
{file = "mujoco-3.1.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:daa6a3ca50a3769ebfd59274651d2edc76b177cd950560022120fb77cd51f607"},
{file = "mujoco-3.1.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:80f3e99d1f2bb02bf7903ba4fef9c31e05fba439b7292ed751390ec78e1eb890"},
{file = "mujoco-3.1.3-cp39-cp39-win_amd64.whl", hash = "sha256:2d2fe38b1a7f64e708e8b9a96cf7677027b33fb6e059184163976c6c03fef4cc"},
{file = "mujoco-3.1.3.tar.gz", hash = "sha256:f700d074031060b46111ddb60432d00425f821eeeaf0ccc76ed95d47861bd4de"},
]
[package.dependencies]
absl-py = "*"
etils = {version = "*", extras = ["epath"]}
glfw = "*"
numpy = "*"
pyopengl = "*"
[[package]]
name = "numpy"
version = "1.26.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
{file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
{file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
{file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"},
{file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"},
{file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"},
{file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"},
{file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
{file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
{file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
{file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
{file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"},
{file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"},
{file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"},
{file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
]
[[package]]
name = "protobuf"
version = "5.26.1"
description = ""
optional = false
python-versions = ">=3.8"
files = [
{file = "protobuf-5.26.1-cp310-abi3-win32.whl", hash = "sha256:3c388ea6ddfe735f8cf69e3f7dc7611e73107b60bdfcf5d0f024c3ccd3794e23"},
{file = "protobuf-5.26.1-cp310-abi3-win_amd64.whl", hash = "sha256:e6039957449cb918f331d32ffafa8eb9255769c96aa0560d9a5bf0b4e00a2a33"},
{file = "protobuf-5.26.1-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:38aa5f535721d5bb99861166c445c4105c4e285c765fbb2ac10f116e32dcd46d"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_aarch64.whl", hash = "sha256:fbfe61e7ee8c1860855696e3ac6cfd1b01af5498facc6834fcc345c9684fb2ca"},
{file = "protobuf-5.26.1-cp37-abi3-manylinux2014_x86_64.whl", hash = "sha256:f7417703f841167e5a27d48be13389d52ad705ec09eade63dfc3180a959215d7"},
{file = "protobuf-5.26.1-cp38-cp38-win32.whl", hash = "sha256:d693d2504ca96750d92d9de8a103102dd648fda04540495535f0fec7577ed8fc"},
{file = "protobuf-5.26.1-cp38-cp38-win_amd64.whl", hash = "sha256:9b557c317ebe6836835ec4ef74ec3e994ad0894ea424314ad3552bc6e8835b4e"},
{file = "protobuf-5.26.1-cp39-cp39-win32.whl", hash = "sha256:b9ba3ca83c2e31219ffbeb9d76b63aad35a3eb1544170c55336993d7a18ae72c"},
{file = "protobuf-5.26.1-cp39-cp39-win_amd64.whl", hash = "sha256:7ee014c2c87582e101d6b54260af03b6596728505c79f17c8586e7523aaa8f8c"},
{file = "protobuf-5.26.1-py3-none-any.whl", hash = "sha256:da612f2720c0183417194eeaa2523215c4fcc1a1949772dc65f05047e08d5932"},
{file = "protobuf-5.26.1.tar.gz", hash = "sha256:8ca2a1d97c290ec7b16e4e5dff2e5ae150cc1582f55b5ab300d45cb0dfa90e51"},
]
[[package]]
name = "pyopengl"
version = "3.1.7"
description = "Standard OpenGL bindings for Python"
optional = false
python-versions = "*"
files = [
{file = "PyOpenGL-3.1.7-py3-none-any.whl", hash = "sha256:a6ab19cf290df6101aaf7470843a9c46207789855746399d0af92521a0a92b7a"},
{file = "PyOpenGL-3.1.7.tar.gz", hash = "sha256:eef31a3888e6984fd4d8e6c9961b184c9813ca82604d37fe3da80eb000a76c86"},
]
[[package]]
name = "pyparsing"
version = "3.1.2"
description = "pyparsing module - Classes and methods to define and execute parsing grammars"
optional = false
python-versions = ">=3.6.8"
files = [
{file = "pyparsing-3.1.2-py3-none-any.whl", hash = "sha256:f9db75911801ed778fe61bb643079ff86601aca99fcae6345aa67292038fb742"},
{file = "pyparsing-3.1.2.tar.gz", hash = "sha256:a1bac0ce561155ecc3ed78ca94d3c9378656ad4c94c1270de543f621420f94ad"},
]
[package.extras]
diagrams = ["jinja2", "railroad-diagrams"]
[[package]]
name = "requests"
version = "2.31.0"
description = "Python HTTP for Humans."
optional = false
python-versions = ">=3.7"
files = [
{file = "requests-2.31.0-py3-none-any.whl", hash = "sha256:58cd2187c01e70e6e26505bca751777aa9f2ee0b7f4300988b709f44e013003f"},
{file = "requests-2.31.0.tar.gz", hash = "sha256:942c5a758f98d790eaed1a29cb6eefc7ffb0d1cf7af05c3d2791656dbd6ad1e1"},
]
[package.dependencies]
certifi = ">=2017.4.17"
charset-normalizer = ">=2,<4"
idna = ">=2.5,<4"
urllib3 = ">=1.21.1,<3"
[package.extras]
socks = ["PySocks (>=1.5.6,!=1.5.7)"]
use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"]
[[package]]
name = "scipy"
version = "1.12.0"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"},
{file = "scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1"},
{file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563"},
{file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c"},
{file = "scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd"},
{file = "scipy-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2"},
{file = "scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08"},
{file = "scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c"},
{file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467"},
{file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a"},
{file = "scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba"},
{file = "scipy-1.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70"},
{file = "scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372"},
{file = "scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3"},
{file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc"},
{file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c"},
{file = "scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338"},
{file = "scipy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c"},
{file = "scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35"},
{file = "scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067"},
{file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371"},
{file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490"},
{file = "scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc"},
{file = "scipy-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e"},
{file = "scipy-1.12.0.tar.gz", hash = "sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3"},
]
[package.dependencies]
numpy = ">=1.22.4,<1.29.0"
[package.extras]
dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"]
doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"]
test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "setuptools"
version = "69.2.0"
description = "Easily download, build, install, upgrade, and uninstall Python packages"
optional = false
python-versions = ">=3.8"
files = [
{file = "setuptools-69.2.0-py3-none-any.whl", hash = "sha256:c21c49fb1042386df081cb5d86759792ab89efca84cf114889191cd09aacc80c"},
{file = "setuptools-69.2.0.tar.gz", hash = "sha256:0ff4183f8f42cd8fa3acea16c45205521a4ef28f73c6391d8a25e92893134f2e"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (<7.2.5)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-inline-tabs", "sphinx-lint", "sphinx-notfound-page (>=1,<2)", "sphinx-reredirects", "sphinxcontrib-towncrier"]
testing = ["build[virtualenv]", "filelock (>=3.4.0)", "importlib-metadata", "ini2toml[lite] (>=0.9)", "jaraco.develop (>=7.21)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "mypy (==1.9)", "packaging (>=23.2)", "pip (>=19.1)", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-home (>=0.5)", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-ruff (>=0.2.1)", "pytest-timeout", "pytest-xdist (>=3)", "tomli", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"]
testing-integration = ["build[virtualenv] (>=1.0.3)", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "packaging (>=23.2)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"]
[[package]]
name = "tqdm"
version = "4.66.2"
description = "Fast, Extensible Progress Meter"
optional = false
python-versions = ">=3.7"
files = [
{file = "tqdm-4.66.2-py3-none-any.whl", hash = "sha256:1ee4f8a893eb9bef51c6e35730cebf234d5d0b6bd112b0271e10ed7c24a02bd9"},
{file = "tqdm-4.66.2.tar.gz", hash = "sha256:6cd52cdf0fef0e0f543299cfc96fec90d7b8a7e88745f411ec33eb44d5ed3531"},
]
[package.dependencies]
colorama = {version = "*", markers = "platform_system == \"Windows\""}
[package.extras]
dev = ["pytest (>=6)", "pytest-cov", "pytest-timeout", "pytest-xdist"]
notebook = ["ipywidgets (>=6)"]
slack = ["slack-sdk"]
telegram = ["requests"]
[[package]]
name = "typing-extensions"
version = "4.10.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"},
{file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"},
]
[[package]]
name = "urllib3"
version = "2.2.1"
description = "HTTP library with thread-safe connection pooling, file post, and more."
optional = false
python-versions = ">=3.8"
files = [
{file = "urllib3-2.2.1-py3-none-any.whl", hash = "sha256:450b20ec296a467077128bff42b73080516e71b56ff59a60a02bef2232c4fa9d"},
{file = "urllib3-2.2.1.tar.gz", hash = "sha256:d0570876c61ab9e520d776c38acbbb5b05a776d3f9ff98a5c8fd5162a444cf19"},
]
[package.extras]
brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)"]
h2 = ["h2 (>=4,<5)"]
socks = ["pysocks (>=1.5.6,!=1.5.7,<2.0)"]
zstd = ["zstandard (>=0.18.0)"]
[[package]]
name = "zipp"
version = "3.18.1"
description = "Backport of pathlib-compatible object wrapper for zip files"
optional = false
python-versions = ">=3.8"
files = [
{file = "zipp-3.18.1-py3-none-any.whl", hash = "sha256:206f5a15f2af3dbaee80769fb7dc6f249695e940acca08dfb2a4769fe61e538b"},
{file = "zipp-3.18.1.tar.gz", hash = "sha256:2884ed22e7d8961de1c9a05142eb69a247f120291bc0206a00a7642f09b5b715"},
]
[package.extras]
docs = ["furo", "jaraco.packaging (>=9.3)", "jaraco.tidelift (>=1.4)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-lint"]
testing = ["big-O", "jaraco.functools", "jaraco.itertools", "more-itertools", "pytest (>=6)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=2.2)", "pytest-ignore-flaky", "pytest-mypy", "pytest-ruff (>=0.2.1)"]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "07c474dba5df862978c1e7f32a95edf4636ed9ba459c6f3e8c013ad1007a2884"

View File

@@ -0,0 +1,32 @@
[tool.poetry]
name = "sim_aloha"
version = "0.1.2"
description = "ALOHA environment for LeRobot"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
]
maintainers = [
"Alexander Soare <alexander.soare159@gmail.com>",
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
"Simon Alibert <alibert.sim@gmail.com>",
]
readme = "README.md"
license = "Apache-2.0"
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "aloha"}]
[tool.poetry.dependencies]
python = "^3.10"
dm-control = "1.0.14"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

1
envs/sim_pusht/README.md Normal file
View File

@@ -0,0 +1 @@
# PushT environment for LeRobot

675
envs/sim_pusht/poetry.lock generated Normal file
View File

@@ -0,0 +1,675 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "cffi"
version = "1.16.0"
description = "Foreign Function Interface for Python calling C code."
optional = false
python-versions = ">=3.8"
files = [
{file = "cffi-1.16.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6b3d6606d369fc1da4fd8c357d026317fbb9c9b75d36dc16e90e84c26854b088"},
{file = "cffi-1.16.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ac0f5edd2360eea2f1daa9e26a41db02dd4b0451b48f7c318e217ee092a213e9"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7e61e3e4fa664a8588aa25c883eab612a188c725755afff6289454d6362b9673"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a72e8961a86d19bdb45851d8f1f08b041ea37d2bd8d4fd19903bc3083d80c896"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5b50bf3f55561dac5438f8e70bfcdfd74543fd60df5fa5f62d94e5867deca684"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:7651c50c8c5ef7bdb41108b7b8c5a83013bfaa8a935590c5d74627c047a583c7"},
{file = "cffi-1.16.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4108df7fe9b707191e55f33efbcb2d81928e10cea45527879a4749cbe472614"},
{file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:32c68ef735dbe5857c810328cb2481e24722a59a2003018885514d4c09af9743"},
{file = "cffi-1.16.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:673739cb539f8cdaa07d92d02efa93c9ccf87e345b9a0b556e3ecc666718468d"},
{file = "cffi-1.16.0-cp310-cp310-win32.whl", hash = "sha256:9f90389693731ff1f659e55c7d1640e2ec43ff725cc61b04b2f9c6d8d017df6a"},
{file = "cffi-1.16.0-cp310-cp310-win_amd64.whl", hash = "sha256:e6024675e67af929088fda399b2094574609396b1decb609c55fa58b028a32a1"},
{file = "cffi-1.16.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:b84834d0cf97e7d27dd5b7f3aca7b6e9263c56308ab9dc8aae9784abb774d404"},
{file = "cffi-1.16.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:1b8ebc27c014c59692bb2664c7d13ce7a6e9a629be20e54e7271fa696ff2b417"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ee07e47c12890ef248766a6e55bd38ebfb2bb8edd4142d56db91b21ea68b7627"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8a9d3ebe49f084ad71f9269834ceccbf398253c9fac910c4fd7053ff1386936"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:e70f54f1796669ef691ca07d046cd81a29cb4deb1e5f942003f401c0c4a2695d"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:5bf44d66cdf9e893637896c7faa22298baebcd18d1ddb6d2626a6e39793a1d56"},
{file = "cffi-1.16.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:7b78010e7b97fef4bee1e896df8a4bbb6712b7f05b7ef630f9d1da00f6444d2e"},
{file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c6a164aa47843fb1b01e941d385aab7215563bb8816d80ff3a363a9f8448a8dc"},
{file = "cffi-1.16.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e09f3ff613345df5e8c3667da1d918f9149bd623cd9070c983c013792a9a62eb"},
{file = "cffi-1.16.0-cp311-cp311-win32.whl", hash = "sha256:2c56b361916f390cd758a57f2e16233eb4f64bcbeee88a4881ea90fca14dc6ab"},
{file = "cffi-1.16.0-cp311-cp311-win_amd64.whl", hash = "sha256:db8e577c19c0fda0beb7e0d4e09e0ba74b1e4c092e0e40bfa12fe05b6f6d75ba"},
{file = "cffi-1.16.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:fa3a0128b152627161ce47201262d3140edb5a5c3da88d73a1b790a959126956"},
{file = "cffi-1.16.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:68e7c44931cc171c54ccb702482e9fc723192e88d25a0e133edd7aff8fcd1f6e"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:abd808f9c129ba2beda4cfc53bde801e5bcf9d6e0f22f095e45327c038bfe68e"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:88e2b3c14bdb32e440be531ade29d3c50a1a59cd4e51b1dd8b0865c54ea5d2e2"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:fcc8eb6d5902bb1cf6dc4f187ee3ea80a1eba0a89aba40a5cb20a5087d961357"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:b7be2d771cdba2942e13215c4e340bfd76398e9227ad10402a8767ab1865d2e6"},
{file = "cffi-1.16.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e715596e683d2ce000574bae5d07bd522c781a822866c20495e52520564f0969"},
{file = "cffi-1.16.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:2d92b25dbf6cae33f65005baf472d2c245c050b1ce709cc4588cdcdd5495b520"},
{file = "cffi-1.16.0-cp312-cp312-win32.whl", hash = "sha256:b2ca4e77f9f47c55c194982e10f058db063937845bb2b7a86c84a6cfe0aefa8b"},
{file = "cffi-1.16.0-cp312-cp312-win_amd64.whl", hash = "sha256:68678abf380b42ce21a5f2abde8efee05c114c2fdb2e9eef2efdb0257fba1235"},
{file = "cffi-1.16.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:0c9ef6ff37e974b73c25eecc13952c55bceed9112be2d9d938ded8e856138bcc"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a09582f178759ee8128d9270cd1344154fd473bb77d94ce0aeb2a93ebf0feaf0"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e760191dd42581e023a68b758769e2da259b5d52e3103c6060ddc02c9edb8d7b"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:80876338e19c951fdfed6198e70bc88f1c9758b94578d5a7c4c91a87af3cf31c"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a6a14b17d7e17fa0d207ac08642c8820f84f25ce17a442fd15e27ea18d67c59b"},
{file = "cffi-1.16.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6602bc8dc6f3a9e02b6c22c4fc1e47aa50f8f8e6d3f78a5e16ac33ef5fefa324"},
{file = "cffi-1.16.0-cp38-cp38-win32.whl", hash = "sha256:131fd094d1065b19540c3d72594260f118b231090295d8c34e19a7bbcf2e860a"},
{file = "cffi-1.16.0-cp38-cp38-win_amd64.whl", hash = "sha256:31d13b0f99e0836b7ff893d37af07366ebc90b678b6664c955b54561fc36ef36"},
{file = "cffi-1.16.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:582215a0e9adbe0e379761260553ba11c58943e4bbe9c36430c4ca6ac74b15ed"},
{file = "cffi-1.16.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b29ebffcf550f9da55bec9e02ad430c992a87e5f512cd63388abb76f1036d8d2"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:dc9b18bf40cc75f66f40a7379f6a9513244fe33c0e8aa72e2d56b0196a7ef872"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9cb4a35b3642fc5c005a6755a5d17c6c8b6bcb6981baf81cea8bfbc8903e8ba8"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b86851a328eedc692acf81fb05444bdf1891747c25af7529e39ddafaf68a4f3f"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:c0f31130ebc2d37cdd8e44605fb5fa7ad59049298b3f745c74fa74c62fbfcfc4"},
{file = "cffi-1.16.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f8e709127c6c77446a8c0a8c8bf3c8ee706a06cd44b1e827c3e6a2ee6b8c098"},
{file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:748dcd1e3d3d7cd5443ef03ce8685043294ad6bd7c02a38d1bd367cfd968e000"},
{file = "cffi-1.16.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:8895613bcc094d4a1b2dbe179d88d7fb4a15cee43c052e8885783fac397d91fe"},
{file = "cffi-1.16.0-cp39-cp39-win32.whl", hash = "sha256:ed86a35631f7bfbb28e108dd96773b9d5a6ce4811cf6ea468bb6a359b256b1e4"},
{file = "cffi-1.16.0-cp39-cp39-win_amd64.whl", hash = "sha256:3686dffb02459559c74dd3d81748269ffb0eb027c39a6fc99502de37d501faa8"},
{file = "cffi-1.16.0.tar.gz", hash = "sha256:bcb3ef43e58665bbda2fb198698fcae6776483e0c4a631aa5647806c25e02cc0"},
]
[package.dependencies]
pycparser = "*"
[[package]]
name = "cloudpickle"
version = "3.0.0"
description = "Pickler class to extend the standard pickle.Pickler functionality"
optional = false
python-versions = ">=3.8"
files = [
{file = "cloudpickle-3.0.0-py3-none-any.whl", hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7"},
{file = "cloudpickle-3.0.0.tar.gz", hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882"},
]
[[package]]
name = "farama-notifications"
version = "0.0.4"
description = "Notifications for all Farama Foundation maintained libraries."
optional = false
python-versions = "*"
files = [
{file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
{file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
]
[[package]]
name = "gymnasium"
version = "0.29.1"
description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
optional = false
python-versions = ">=3.8"
files = [
{file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
{file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
]
[package.dependencies]
cloudpickle = ">=1.2.0"
farama-notifications = ">=0.0.1"
numpy = ">=1.21.0"
typing-extensions = ">=4.3.0"
[package.extras]
accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
[[package]]
name = "imageio"
version = "2.34.0"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
optional = false
python-versions = ">=3.8"
files = [
{file = "imageio-2.34.0-py3-none-any.whl", hash = "sha256:08082bf47ccb54843d9c73fe9fc8f3a88c72452ab676b58aca74f36167e8ccba"},
{file = "imageio-2.34.0.tar.gz", hash = "sha256:ae9732e10acf807a22c389aef193f42215718e16bd06eed0c5bb57e1034a4d53"},
]
[package.dependencies]
numpy = "*"
pillow = ">=8.3.2"
[package.extras]
all-plugins = ["astropy", "av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
build = ["wheel"]
dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"]
docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"]
ffmpeg = ["imageio-ffmpeg", "psutil"]
fits = ["astropy"]
full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"]
gdal = ["gdal"]
itk = ["itk"]
linting = ["black", "flake8"]
pillow-heif = ["pillow-heif"]
pyav = ["av"]
test = ["fsspec[github]", "pytest", "pytest-cov"]
tifffile = ["tifffile"]
[[package]]
name = "lazy-loader"
version = "0.3"
description = "lazy_loader"
optional = false
python-versions = ">=3.7"
files = [
{file = "lazy_loader-0.3-py3-none-any.whl", hash = "sha256:1e9e76ee8631e264c62ce10006718e80b2cfc74340d17d1031e0f84af7478554"},
{file = "lazy_loader-0.3.tar.gz", hash = "sha256:3b68898e34f5b2a29daaaac172c6555512d0f32074f147e2254e4a6d9d838f37"},
]
[package.extras]
lint = ["pre-commit (>=3.3)"]
test = ["pytest (>=7.4)", "pytest-cov (>=4.1)"]
[[package]]
name = "networkx"
version = "3.2.1"
description = "Python package for creating and manipulating graphs and networks"
optional = false
python-versions = ">=3.9"
files = [
{file = "networkx-3.2.1-py3-none-any.whl", hash = "sha256:f18c69adc97877c42332c170849c96cefa91881c99a7cb3e95b7c659ebdc1ec2"},
{file = "networkx-3.2.1.tar.gz", hash = "sha256:9f1bb5cf3409bf324e0a722c20bdb4c20ee39bf1c30ce8ae499c8502b0b5e0c6"},
]
[package.extras]
default = ["matplotlib (>=3.5)", "numpy (>=1.22)", "pandas (>=1.4)", "scipy (>=1.9,!=1.11.0,!=1.11.1)"]
developer = ["changelist (==0.4)", "mypy (>=1.1)", "pre-commit (>=3.2)", "rtoml"]
doc = ["nb2plots (>=0.7)", "nbconvert (<7.9)", "numpydoc (>=1.6)", "pillow (>=9.4)", "pydata-sphinx-theme (>=0.14)", "sphinx (>=7)", "sphinx-gallery (>=0.14)", "texext (>=0.6.7)"]
extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.11)", "sympy (>=1.10)"]
test = ["pytest (>=7.2)", "pytest-cov (>=4.0)"]
[[package]]
name = "numpy"
version = "1.26.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
{file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
{file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
{file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"},
{file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"},
{file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"},
{file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"},
{file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
{file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
{file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
{file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
{file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"},
{file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"},
{file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"},
{file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
]
[[package]]
name = "opencv-python"
version = "4.9.0.80"
description = "Wrapper package for OpenCV python bindings."
optional = false
python-versions = ">=3.6"
files = [
{file = "opencv-python-4.9.0.80.tar.gz", hash = "sha256:1a9f0e6267de3a1a1db0c54213d022c7c8b5b9ca4b580e80bdc58516c922c9e1"},
{file = "opencv_python-4.9.0.80-cp37-abi3-macosx_10_16_x86_64.whl", hash = "sha256:7e5f7aa4486651a6ebfa8ed4b594b65bd2d2f41beeb4241a3e4b1b85acbbbadb"},
{file = "opencv_python-4.9.0.80-cp37-abi3-macosx_11_0_arm64.whl", hash = "sha256:71dfb9555ccccdd77305fc3dcca5897fbf0cf28b297c51ee55e079c065d812a3"},
{file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7b34a52e9da36dda8c151c6394aed602e4b17fa041df0b9f5b93ae10b0fcca2a"},
{file = "opencv_python-4.9.0.80-cp37-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e4088cab82b66a3b37ffc452976b14a3c599269c247895ae9ceb4066d8188a57"},
{file = "opencv_python-4.9.0.80-cp37-abi3-win32.whl", hash = "sha256:dcf000c36dd1651118a2462257e3a9e76db789a78432e1f303c7bac54f63ef6c"},
{file = "opencv_python-4.9.0.80-cp37-abi3-win_amd64.whl", hash = "sha256:3f16f08e02b2a2da44259c7cc712e779eff1dd8b55fdb0323e8cab09548086c0"},
]
[package.dependencies]
numpy = [
{version = ">=1.26.0", markers = "python_version >= \"3.12\""},
{version = ">=1.23.5", markers = "python_version >= \"3.11\" and python_version < \"3.12\""},
{version = ">=1.21.4", markers = "python_version >= \"3.10\" and platform_system == \"Darwin\" and python_version < \"3.11\""},
{version = ">=1.21.2", markers = "platform_system != \"Darwin\" and python_version >= \"3.10\" and python_version < \"3.11\""},
]
[[package]]
name = "packaging"
version = "24.0"
description = "Core utilities for Python packages"
optional = false
python-versions = ">=3.7"
files = [
{file = "packaging-24.0-py3-none-any.whl", hash = "sha256:2ddfb553fdf02fb784c234c7ba6ccc288296ceabec964ad2eae3777778130bc5"},
{file = "packaging-24.0.tar.gz", hash = "sha256:eb82c5e3e56209074766e6885bb04b8c38a0c015d0a30036ebe7ece34c9989e9"},
]
[[package]]
name = "pillow"
version = "10.2.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
{file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e"},
{file = "pillow-10.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2"},
{file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c"},
{file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0"},
{file = "pillow-10.2.0-cp310-cp310-win32.whl", hash = "sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023"},
{file = "pillow-10.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72"},
{file = "pillow-10.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad"},
{file = "pillow-10.2.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5"},
{file = "pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311"},
{file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1"},
{file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757"},
{file = "pillow-10.2.0-cp311-cp311-win32.whl", hash = "sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068"},
{file = "pillow-10.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56"},
{file = "pillow-10.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1"},
{file = "pillow-10.2.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef"},
{file = "pillow-10.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04"},
{file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f"},
{file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb"},
{file = "pillow-10.2.0-cp312-cp312-win32.whl", hash = "sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f"},
{file = "pillow-10.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9"},
{file = "pillow-10.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48"},
{file = "pillow-10.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9"},
{file = "pillow-10.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d"},
{file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6"},
{file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe"},
{file = "pillow-10.2.0-cp38-cp38-win32.whl", hash = "sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e"},
{file = "pillow-10.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39"},
{file = "pillow-10.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67"},
{file = "pillow-10.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13"},
{file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7"},
{file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591"},
{file = "pillow-10.2.0-cp39-cp39-win32.whl", hash = "sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516"},
{file = "pillow-10.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8"},
{file = "pillow-10.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6"},
{file = "pillow-10.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868"},
{file = "pillow-10.2.0.tar.gz", hash = "sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
typing = ["typing-extensions"]
xmp = ["defusedxml"]
[[package]]
name = "pycparser"
version = "2.21"
description = "C parser in Python"
optional = false
python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*"
files = [
{file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"},
{file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"},
]
[[package]]
name = "pygame"
version = "2.5.2"
description = "Python Game Development"
optional = false
python-versions = ">=3.6"
files = [
{file = "pygame-2.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:a0769eb628c818761755eb0a0ca8216b95270ea8cbcbc82227e39ac9644643da"},
{file = "pygame-2.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ed9a3d98adafa0805ccbaaff5d2996a2b5795381285d8437a4a5d248dbd12b4a"},
{file = "pygame-2.5.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f30d1618672a55e8c6669281ba264464b3ab563158e40d89e8c8b3faa0febebd"},
{file = "pygame-2.5.2-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:39690e9be9baf58b7359d1f3b2336e1fd6f92fedbbce42987be5df27f8d30718"},
{file = "pygame-2.5.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:03879ec299c9f4ba23901b2649a96b2143f0a5d787f0b6c39469989e2320caf1"},
{file = "pygame-2.5.2-cp310-cp310-win32.whl", hash = "sha256:74e1d6284100e294f445832e6f6343be4fe4748decc4f8a51131ae197dae8584"},
{file = "pygame-2.5.2-cp310-cp310-win_amd64.whl", hash = "sha256:485239c7d32265fd35b76ae8f64f34b0637ae11e69d76de15710c4b9edcc7c8d"},
{file = "pygame-2.5.2-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:34646ca20e163dc6f6cf8170f1e12a2e41726780112594ac061fa448cf7ccd75"},
{file = "pygame-2.5.2-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3b8a6e351665ed26ea791f0e1fd649d3f483e8681892caef9d471f488f9ea5ee"},
{file = "pygame-2.5.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:dc346965847aef00013fa2364f41a64f068cd096dcc7778fc306ca3735f0eedf"},
{file = "pygame-2.5.2-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35632035fd81261f2d797fa810ea8c46111bd78ceb6089d52b61ed7dc3c5d05f"},
{file = "pygame-2.5.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e24d05184e4195fe5ebcdce8b18ecb086f00182b9ae460a86682d312ce8d31f"},
{file = "pygame-2.5.2-cp311-cp311-win32.whl", hash = "sha256:f02c1c7505af18d426d355ac9872bd5c916b27f7b0fe224749930662bea47a50"},
{file = "pygame-2.5.2-cp311-cp311-win_amd64.whl", hash = "sha256:6d58c8cf937815d3b7cdc0fa9590c5129cb2c9658b72d00e8a4568dea2ff1d42"},
{file = "pygame-2.5.2-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:1a2a43802bb5e89ce2b3b775744e78db4f9a201bf8d059b946c61722840ceea8"},
{file = "pygame-2.5.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1c289f2613c44fe70a1e40769de4a49c5ab5a29b9376f1692bb1a15c9c1c9bfa"},
{file = "pygame-2.5.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:074aa6c6e110c925f7f27f00c7733c6303407edc61d738882985091d1eb2ef17"},
{file = "pygame-2.5.2-cp312-cp312-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:fe0228501ec616779a0b9c4299e837877783e18df294dd690b9ab0eed3d8aaab"},
{file = "pygame-2.5.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:31648d38ecdc2335ffc0e38fb18a84b3339730521505dac68514f83a1092e3f4"},
{file = "pygame-2.5.2-cp312-cp312-win32.whl", hash = "sha256:224c308856334bc792f696e9278e50d099a87c116f7fc314cd6aa3ff99d21592"},
{file = "pygame-2.5.2-cp312-cp312-win_amd64.whl", hash = "sha256:dd2d2650faf54f9a0f5bd0db8409f79609319725f8f08af6507a0609deadcad4"},
{file = "pygame-2.5.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:9b30bc1220c457169571aac998e54b013aaeb732d2fd8744966cb1cfab1f61d1"},
{file = "pygame-2.5.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:78fcd7643358b886a44127ff7dec9041c056c212b3a98977674f83f99e9b12d3"},
{file = "pygame-2.5.2-cp36-cp36m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:35cf093a51cb294ede56c29d4acf41538c00f297fcf78a9b186fb7d23c0577b6"},
{file = "pygame-2.5.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6fe323acbf53a0195c8c98b1b941eba7ac24e3e2b28ae48e8cda566f15fc4945"},
{file = "pygame-2.5.2-cp36-cp36m-win32.whl", hash = "sha256:5697528266b4716d9cdd44a5a1d210f4d86ef801d0f64ca5da5d0816704009d9"},
{file = "pygame-2.5.2-cp36-cp36m-win_amd64.whl", hash = "sha256:edda1f7cff4806a4fa39e0e8ccd75f38d1d340fa5fc52d8582ade87aca247d92"},
{file = "pygame-2.5.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:9bd738fd4ecc224769d0b4a719f96900a86578e26e0105193658a32966df2aae"},
{file = "pygame-2.5.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:30a8d7cf12363b4140bf2f93b5eec4028376ca1d0fe4b550588f836279485308"},
{file = "pygame-2.5.2-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:bc12e4dea3e88ea8a553de6d56a37b704dbe2aed95105889f6afeb4b96e62097"},
{file = "pygame-2.5.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2b34c73cb328024f8db3cb6487a37e54000148988275d8d6e5adf99d9323c937"},
{file = "pygame-2.5.2-cp37-cp37m-win32.whl", hash = "sha256:7d0a2794649defa57ef50b096a99f7113d3d0c2e32d1426cafa7d618eadce4c7"},
{file = "pygame-2.5.2-cp37-cp37m-win_amd64.whl", hash = "sha256:41f8779f52e0f6e6e6ccb8f0b5536e432bf386ee29c721a1c22cada7767b0cef"},
{file = "pygame-2.5.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:677e37bc0ea7afd89dde5a88ced4458aa8656159c70a576eea68b5622ee1997b"},
{file = "pygame-2.5.2-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:47a8415d2bd60e6909823b5643a1d4ef5cc29417d817f2a214b255f6fa3a1e4c"},
{file = "pygame-2.5.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4ff21201df6278b8ca2e948fb148ffe88f5481fd03760f381dd61e45954c7dff"},
{file = "pygame-2.5.2-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d29a84b2e02814b9ba925357fd2e1df78efe5e1aa64dc3051eaed95d2b96eafd"},
{file = "pygame-2.5.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:d78485c4d21133d6b2fbb504cd544ca655e50b6eb551d2995b3aa6035928adda"},
{file = "pygame-2.5.2-cp38-cp38-win32.whl", hash = "sha256:d851247239548aa357c4a6840fb67adc2d570ce7cb56988d036a723d26b48bff"},
{file = "pygame-2.5.2-cp38-cp38-win_amd64.whl", hash = "sha256:88d1cdacc2d3471eceab98bf0c93c14d3a8461f93e58e3d926f20d4de3a75554"},
{file = "pygame-2.5.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:4f1559e7efe4efb9dc19d2d811d702f325d9605f9f6f9ececa39ee6890c798f5"},
{file = "pygame-2.5.2-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:cf2191b756ceb0e8458a761d0c665b0c70b538570449e0d39b75a5ba94ac5cf0"},
{file = "pygame-2.5.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6cf2257447ce7f2d6de37e5fb019d2bbe32ed05a5721ace8bc78c2d9beaf3aee"},
{file = "pygame-2.5.2-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d75cbbfaba2b81434d62631d0b08b85fab16cf4a36e40b80298d3868927e1299"},
{file = "pygame-2.5.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:daca456d5b9f52e088e06a127dec182b3638a775684fb2260f25d664351cf1ae"},
{file = "pygame-2.5.2-cp39-cp39-win32.whl", hash = "sha256:3b3e619e33d11c297d7a57a82db40681f9c2c3ae1d5bf06003520b4fe30c435d"},
{file = "pygame-2.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:1822d534bb7fe756804647b6da2c9ea5d7a62d8796b2e15d172d3be085de28c6"},
{file = "pygame-2.5.2-pp36-pypy36_pp73-win32.whl", hash = "sha256:e708fc8f709a0fe1d1876489345f2e443d47f3976d33455e2e1e937f972f8677"},
{file = "pygame-2.5.2-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c13edebc43c240fb0532969e914f0ccefff5ae7e50b0b788d08ad2c15ef793e4"},
{file = "pygame-2.5.2-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:263b4a7cbfc9fe2055abc21b0251cc17dea6dff750f0e1c598919ff350cdbffe"},
{file = "pygame-2.5.2-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:e58e2b0c791041e4bccafa5bd7650623ba1592b8fe62ae0a276b7d0ecb314b6c"},
{file = "pygame-2.5.2-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a0bd67426c02ffe6c9827fc4bcbda9442fbc451d29b17c83a3c088c56fef2c90"},
{file = "pygame-2.5.2-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9dcff6cbba1584cf7732ce1dbdd044406cd4f6e296d13bcb7fba963fb4aeefc9"},
{file = "pygame-2.5.2-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:ce4b6c0bfe44d00bb0998a6517bd0cf9455f642f30f91bc671ad41c05bf6f6ae"},
{file = "pygame-2.5.2-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:68c4e8e60b725ffc7a6c6ecd9bb5fcc5ed2d6e0e2a2c4a29a8454856ef16ad63"},
{file = "pygame-2.5.2-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1f3849f97372a3381c66955f99a0d58485ccd513c3d00c030b869094ce6997a6"},
{file = "pygame-2.5.2.tar.gz", hash = "sha256:c1b89eb5d539e7ac5cf75513125fb5f2f0a2d918b1fd6e981f23bf0ac1b1c24a"},
]
[[package]]
name = "pymunk"
version = "6.6.0"
description = "Pymunk is a easy-to-use pythonic 2d physics library"
optional = false
python-versions = ">=3.7"
files = [
{file = "pymunk-6.6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6da50dd97683337a290110d594fad07a75153d2d837b570ef972478d739c33f8"},
{file = "pymunk-6.6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:bcd7d16a2b4d51d45d6780a701f65c8d5b36fdf545c3f4738910da41e2a9c4ee"},
{file = "pymunk-6.6.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:32c91a783b645267518588515acdc3ff315135297eef39386d488c4ff2a7c139"},
{file = "pymunk-6.6.0-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:74694f92f46fe54e2c033b598b2c38185f456711888955aa3f67003692a3ef91"},
{file = "pymunk-6.6.0-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fe011afb3f7594a679ba35dc7a44e12c8c8aacb55e58d54f14bfe8b82959695c"},
{file = "pymunk-6.6.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:60e5cc6e33f7e880418f75a7d6b5ac3eed47396bbe7c68ca47c389de3b5d1d3a"},
{file = "pymunk-6.6.0-cp310-cp310-win32.whl", hash = "sha256:10518074e33d4fe723bce795f705ad3e850ecec9987559ec3fa072a6539c47ad"},
{file = "pymunk-6.6.0-cp310-cp310-win_amd64.whl", hash = "sha256:5b163b28f9500df1bb5e123e2dba2d1f255e63be6ca098544936a93c05022a43"},
{file = "pymunk-6.6.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:8322594fc68858bfc0142f2f7a100cfb4edb85678a75983ce2fc58ed763afb96"},
{file = "pymunk-6.6.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:4c1d0be60b781d1b8bb11303b25936d01cdef7ccfcc3a68b0c2fd689f63ac11c"},
{file = "pymunk-6.6.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9462200c47f3eb344373077dc01384cb16355a982ce0e33571201f3b7ee44487"},
{file = "pymunk-6.6.0-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ede46cc44432b1316a402129fc225743f7e9f502d0d055790eab877627ddfd98"},
{file = "pymunk-6.6.0-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:3582cd67d6ac16f122d2b7100e0b00d9b55f97a0a7e21336df885166e2bffdc3"},
{file = "pymunk-6.6.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:e4247ede965df39d2fd7ae25e9360762cce61f4d39b95af91d29c1c556c80777"},
{file = "pymunk-6.6.0-cp311-cp311-win32.whl", hash = "sha256:a77f9bb634ab216ac8991f73aa68b4dadfd6690e8cb17627a6646dc8fecd6126"},
{file = "pymunk-6.6.0-cp311-cp311-win_amd64.whl", hash = "sha256:2f579e8c5498b3e8c0686841f1f5e3adf1bdd32b339ee36001ebae19bbafc008"},
{file = "pymunk-6.6.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:ad6ca584a9ea1d6a1536ae158350d73dbbdc637f302a86019b7fb299120439c4"},
{file = "pymunk-6.6.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:b86be4ecfb86d4af26c3dd2e390884305c3b8604e5df8550fbb2968d3ac78411"},
{file = "pymunk-6.6.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:68006cfb71351b6f23a81f541a2eca56596e69977e051e46cfe93a5ffdc410ef"},
{file = "pymunk-6.6.0-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:361d2fa43e65aa5e47dcb50e6b058b3814e19cbdb5bf062d2da78c2b3bdba192"},
{file = "pymunk-6.6.0-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:a3c35975f4172b024e0bb1be6f57f1048dcb469a8cf257c30123d11a9fe57e2a"},
{file = "pymunk-6.6.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:35a57546294656b5bb989e08426a4926e26a17726aef35daf34c2703ee54c0e9"},
{file = "pymunk-6.6.0-cp312-cp312-win32.whl", hash = "sha256:a68480440b60bf5acf3a7a8db1eb571e13ed425d5b693a20020f2efa9cc09592"},
{file = "pymunk-6.6.0-cp312-cp312-win_amd64.whl", hash = "sha256:f7ed11a1e2a306e4213d88a1879ae0fb7c2c983a890fa1b35ed26b9392213c02"},
{file = "pymunk-6.6.0-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:49961e339571d14afa9ebc815190ebfdda69e6ffd433536451bb07d6bc55e430"},
{file = "pymunk-6.6.0-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:70d9d5edcb2e90eeea0afb322c82d75a02e6bb77a9ff08b86daa2245a2c2a4ef"},
{file = "pymunk-6.6.0-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:622746251dda14507d3655b64c93a4509125c0a651265c473945f227ba5763ec"},
{file = "pymunk-6.6.0-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:35277485eb69cc5dda3f15b139723c77d69b9271f9fedf4264d08e8afdea67d0"},
{file = "pymunk-6.6.0-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ceadcf03988c51697a3357d6dd3c96dd60e48b993734346edf8955fcd3770466"},
{file = "pymunk-6.6.0-cp37-cp37m-win32.whl", hash = "sha256:0d8e0e79135e86b6e0e686fd287f297488e728cb8276fc713cb33fdd7ce4f5f2"},
{file = "pymunk-6.6.0-cp37-cp37m-win_amd64.whl", hash = "sha256:259a371150a9e264851d0a9caa85b5a19ba661f364da630a231a3eb326d49ca1"},
{file = "pymunk-6.6.0-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:e97ad1ce7fa3e9ea15622d1e0c45e2757f02e1c947a354888c2014799575c100"},
{file = "pymunk-6.6.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:a4cd70ffc259b8069eabb54ed5c7cbc39d0f5158610791c14ad0437f6cb6d18d"},
{file = "pymunk-6.6.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1cf85e95774a89b2adf084c0129d62f69eaa23b97b800892ddcfa7862b931bbb"},
{file = "pymunk-6.6.0-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:b8d60b9fcde952d6e25c740a1ced5612ace59fa85e578986f7f053a538a681ed"},
{file = "pymunk-6.6.0-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:5652c423ea2769b1d44e33fd2b19f2a6f7f4a34acacec9a86b63c780ac611552"},
{file = "pymunk-6.6.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:939e46d9021cb5bc6ac4dbecafe89245af2b8325787869983b0a99181e37fd39"},
{file = "pymunk-6.6.0-cp38-cp38-win32.whl", hash = "sha256:7785f5ac0597be5693dd2da819233297984d324b6470bf31b76c71399f25a18e"},
{file = "pymunk-6.6.0-cp38-cp38-win_amd64.whl", hash = "sha256:26a0834207785878ba2bb244ab5616d9b6e09d01c2f19641f10247ca22d3c10e"},
{file = "pymunk-6.6.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:ed23f05a65687750cba4d6cde045147d28eee84e44cd33829b79601dc655adf3"},
{file = "pymunk-6.6.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:b2c23f2f182f91944c4ba5cfd6f652e873e6e8b113506c3eca255df5e6c79b6e"},
{file = "pymunk-6.6.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c51b6de5869dcb103467d8ac75f62a1a9f43faa18bf12e37e89247b2d5554a61"},
{file = "pymunk-6.6.0-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5b44c4420b43cfdfedd2278e3beb60970a9a9564f1272c7cc74090931268ab43"},
{file = "pymunk-6.6.0-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:4b8d9c14275fd4853ae863e38bec8a7ae4c7aef4417550ff74fc9f68f120fa00"},
{file = "pymunk-6.6.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:31631a91bf29dde9c4a5f1283056cb91d451fe352f35a440c5cb668b0de19ad5"},
{file = "pymunk-6.6.0-cp39-cp39-win32.whl", hash = "sha256:832d83570d0781e2bcba555b0974e9a5f9ee592079dfd3b183a493cf0ceaac7f"},
{file = "pymunk-6.6.0-cp39-cp39-win_amd64.whl", hash = "sha256:88625cca15c90dc8c0c1b55113f0ff19a8e6601ac0981804d317660c0afde9e2"},
{file = "pymunk-6.6.0-pp310-pypy310_pp73-macosx_10_9_x86_64.whl", hash = "sha256:8e27a8c7b762d43e91f18c320ad849c113dead500184d151aa14bd11a62c2c47"},
{file = "pymunk-6.6.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:aad898ca45546f084b0d88f73c771e3de0d19acc65f1171a9dbdba171945a915"},
{file = "pymunk-6.6.0-pp310-pypy310_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:45f537c79e817330753e6ed220b3ff46b5b983266d5b85ce7c1381a77b33d1f3"},
{file = "pymunk-6.6.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:609341ff1329e59ee7a67b622973064c213111e87916981bc45838f38981ba47"},
{file = "pymunk-6.6.0-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:345b99d19cb848359fbefcaba54a5f1bcc8dd05b084563d693ca4d0622aa1079"},
{file = "pymunk-6.6.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f33c418b758e06960fa28e0434c14818c0d9755f431045db05cc93e646df9b22"},
{file = "pymunk-6.6.0-pp39-pypy39_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:59991310cb1a6f201878e9519cbb36ff746f825c9fac49fa76cf8c85b64bf7ad"},
{file = "pymunk-6.6.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:c7513caf1add221cfa1228c12e14e0997a7212e583a59f517b68e72b1f02e08f"},
{file = "pymunk-6.6.0.tar.gz", hash = "sha256:89be7b6ba237e313c440edfb99612de59bf119e43976d5c76802907cb7a3911c"},
]
[package.dependencies]
cffi = ">=1.15.0"
[package.extras]
dev = ["aafigure", "matplotlib", "pygame", "pyglet (<2.0.0)", "sphinx", "wheel"]
[[package]]
name = "scikit-image"
version = "0.22.0"
description = "Image processing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "scikit_image-0.22.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:74ec5c1d4693506842cc7c9487c89d8fc32aed064e9363def7af08b8f8cbb31d"},
{file = "scikit_image-0.22.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:a05ae4fe03d802587ed8974e900b943275548cde6a6807b785039d63e9a7a5ff"},
{file = "scikit_image-0.22.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6a92dca3d95b1301442af055e196a54b5a5128c6768b79fc0a4098f1d662dee6"},
{file = "scikit_image-0.22.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3663d063d8bf2fb9bdfb0ca967b9ee3b6593139c860c7abc2d2351a8a8863938"},
{file = "scikit_image-0.22.0-cp310-cp310-win_amd64.whl", hash = "sha256:ebdbdc901bae14dab637f8d5c99f6d5cc7aaf4a3b6f4003194e003e9f688a6fc"},
{file = "scikit_image-0.22.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:95d6da2d8a44a36ae04437c76d32deb4e3c993ffc846b394b9949fd8ded73cb2"},
{file = "scikit_image-0.22.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:2c6ef454a85f569659b813ac2a93948022b0298516b757c9c6c904132be327e2"},
{file = "scikit_image-0.22.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e87872f067444ee90a00dd49ca897208308645382e8a24bd3e76f301af2352cd"},
{file = "scikit_image-0.22.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c5c378db54e61b491b9edeefff87e49fcf7fdf729bb93c777d7a5f15d36f743e"},
{file = "scikit_image-0.22.0-cp311-cp311-win_amd64.whl", hash = "sha256:2bcb74adb0634258a67f66c2bb29978c9a3e222463e003b67ba12056c003971b"},
{file = "scikit_image-0.22.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:003ca2274ac0fac252280e7179ff986ff783407001459ddea443fe7916e38cff"},
{file = "scikit_image-0.22.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:cf3c0c15b60ae3e557a0c7575fbd352f0c3ce0afca562febfe3ab80efbeec0e9"},
{file = "scikit_image-0.22.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f5b23908dd4d120e6aecb1ed0277563e8cbc8d6c0565bdc4c4c6475d53608452"},
{file = "scikit_image-0.22.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:be79d7493f320a964f8fcf603121595ba82f84720de999db0fcca002266a549a"},
{file = "scikit_image-0.22.0-cp312-cp312-win_amd64.whl", hash = "sha256:722b970aa5da725dca55252c373b18bbea7858c1cdb406e19f9b01a4a73b30b2"},
{file = "scikit_image-0.22.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:22318b35044cfeeb63ee60c56fc62450e5fe516228138f1d06c7a26378248a86"},
{file = "scikit_image-0.22.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:9e801c44a814afdadeabf4dffdffc23733e393767958b82319706f5fa3e1eaa9"},
{file = "scikit_image-0.22.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c472a1fb3665ec5c00423684590631d95f9afcbc97f01407d348b821880b2cb3"},
{file = "scikit_image-0.22.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3b7a6c89e8d6252332121b58f50e1625c35f7d6a85489c0b6b7ee4f5155d547a"},
{file = "scikit_image-0.22.0-cp39-cp39-win_amd64.whl", hash = "sha256:5071b8f6341bfb0737ab05c8ab4ac0261f9e25dbcc7b5d31e5ed230fd24a7929"},
{file = "scikit_image-0.22.0.tar.gz", hash = "sha256:018d734df1d2da2719087d15f679d19285fce97cd37695103deadfaef2873236"},
]
[package.dependencies]
imageio = ">=2.27"
lazy_loader = ">=0.3"
networkx = ">=2.8"
numpy = ">=1.22"
packaging = ">=21"
pillow = ">=9.0.1"
scipy = ">=1.8"
tifffile = ">=2022.8.12"
[package.extras]
build = ["Cython (>=0.29.32)", "build", "meson-python (>=0.14)", "ninja", "numpy (>=1.22)", "packaging (>=21)", "pythran", "setuptools (>=67)", "spin (==0.6)", "wheel"]
data = ["pooch (>=1.6.0)"]
developer = ["pre-commit", "tomli"]
docs = ["PyWavelets (>=1.1.1)", "dask[array] (>=2022.9.2)", "ipykernel", "ipywidgets", "kaleido", "matplotlib (>=3.5)", "myst-parser", "numpydoc (>=1.6)", "pandas (>=1.5)", "plotly (>=5.10)", "pooch (>=1.6)", "pydata-sphinx-theme (>=0.14.1)", "pytest-runner", "scikit-learn (>=1.1)", "seaborn (>=0.11)", "sphinx (>=7.2)", "sphinx-copybutton", "sphinx-gallery (>=0.14)", "sphinx_design (>=0.5)", "tifffile (>=2022.8.12)"]
optional = ["PyWavelets (>=1.1.1)", "SimpleITK", "astropy (>=5.0)", "cloudpickle (>=0.2.1)", "dask[array] (>=2021.1.0)", "matplotlib (>=3.5)", "pooch (>=1.6.0)", "pyamg", "scikit-learn (>=1.1)"]
test = ["asv", "matplotlib (>=3.5)", "numpydoc (>=1.5)", "pooch (>=1.6.0)", "pytest (>=7.0)", "pytest-cov (>=2.11.0)", "pytest-faulthandler", "pytest-localserver"]
[[package]]
name = "scipy"
version = "1.12.0"
description = "Fundamental algorithms for scientific computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "scipy-1.12.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78e4402e140879387187f7f25d91cc592b3501a2e51dfb320f48dfb73565f10b"},
{file = "scipy-1.12.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:f5f00ebaf8de24d14b8449981a2842d404152774c1a1d880c901bf454cb8e2a1"},
{file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e53958531a7c695ff66c2e7bb7b79560ffdc562e2051644c5576c39ff8efb563"},
{file = "scipy-1.12.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5e32847e08da8d895ce09d108a494d9eb78974cf6de23063f93306a3e419960c"},
{file = "scipy-1.12.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:4c1020cad92772bf44b8e4cdabc1df5d87376cb219742549ef69fc9fd86282dd"},
{file = "scipy-1.12.0-cp310-cp310-win_amd64.whl", hash = "sha256:75ea2a144096b5e39402e2ff53a36fecfd3b960d786b7efd3c180e29c39e53f2"},
{file = "scipy-1.12.0-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:408c68423f9de16cb9e602528be4ce0d6312b05001f3de61fe9ec8b1263cad08"},
{file = "scipy-1.12.0-cp311-cp311-macosx_12_0_arm64.whl", hash = "sha256:5adfad5dbf0163397beb4aca679187d24aec085343755fcdbdeb32b3679f254c"},
{file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c3003652496f6e7c387b1cf63f4bb720951cfa18907e998ea551e6de51a04467"},
{file = "scipy-1.12.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8b8066bce124ee5531d12a74b617d9ac0ea59245246410e19bca549656d9a40a"},
{file = "scipy-1.12.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:8bee4993817e204d761dba10dbab0774ba5a8612e57e81319ea04d84945375ba"},
{file = "scipy-1.12.0-cp311-cp311-win_amd64.whl", hash = "sha256:a24024d45ce9a675c1fb8494e8e5244efea1c7a09c60beb1eeb80373d0fecc70"},
{file = "scipy-1.12.0-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:e7e76cc48638228212c747ada851ef355c2bb5e7f939e10952bc504c11f4e372"},
{file = "scipy-1.12.0-cp312-cp312-macosx_12_0_arm64.whl", hash = "sha256:f7ce148dffcd64ade37b2df9315541f9adad6efcaa86866ee7dd5db0c8f041c3"},
{file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9c39f92041f490422924dfdb782527a4abddf4707616e07b021de33467f917bc"},
{file = "scipy-1.12.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a7ebda398f86e56178c2fa94cad15bf457a218a54a35c2a7b4490b9f9cb2676c"},
{file = "scipy-1.12.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:95e5c750d55cf518c398a8240571b0e0782c2d5a703250872f36eaf737751338"},
{file = "scipy-1.12.0-cp312-cp312-win_amd64.whl", hash = "sha256:e646d8571804a304e1da01040d21577685ce8e2db08ac58e543eaca063453e1c"},
{file = "scipy-1.12.0-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:913d6e7956c3a671de3b05ccb66b11bc293f56bfdef040583a7221d9e22a2e35"},
{file = "scipy-1.12.0-cp39-cp39-macosx_12_0_arm64.whl", hash = "sha256:bba1b0c7256ad75401c73e4b3cf09d1f176e9bd4248f0d3112170fb2ec4db067"},
{file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:730badef9b827b368f351eacae2e82da414e13cf8bd5051b4bdfd720271a5371"},
{file = "scipy-1.12.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6546dc2c11a9df6926afcbdd8a3edec28566e4e785b915e849348c6dd9f3f490"},
{file = "scipy-1.12.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:196ebad3a4882081f62a5bf4aeb7326aa34b110e533aab23e4374fcccb0890dc"},
{file = "scipy-1.12.0-cp39-cp39-win_amd64.whl", hash = "sha256:b360f1b6b2f742781299514e99ff560d1fe9bd1bff2712894b52abe528d1fd1e"},
{file = "scipy-1.12.0.tar.gz", hash = "sha256:4bf5abab8a36d20193c698b0f1fc282c1d083c94723902c447e5d2f1780936a3"},
]
[package.dependencies]
numpy = ">=1.22.4,<1.29.0"
[package.extras]
dev = ["click", "cython-lint (>=0.12.2)", "doit (>=0.36.0)", "mypy", "pycodestyle", "pydevtool", "rich-click", "ruff", "types-psutil", "typing_extensions"]
doc = ["jupytext", "matplotlib (>2)", "myst-nb", "numpydoc", "pooch", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-design (>=0.2.0)"]
test = ["asv", "gmpy2", "hypothesis", "mpmath", "pooch", "pytest", "pytest-cov", "pytest-timeout", "pytest-xdist", "scikit-umfpack", "threadpoolctl"]
[[package]]
name = "shapely"
version = "2.0.3"
description = "Manipulation and analysis of geometric objects"
optional = false
python-versions = ">=3.7"
files = [
{file = "shapely-2.0.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:af7e9abe180b189431b0f490638281b43b84a33a960620e6b2e8d3e3458b61a1"},
{file = "shapely-2.0.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:98040462b36ced9671e266b95c326b97f41290d9d17504a1ee4dc313a7667b9c"},
{file = "shapely-2.0.3-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:71eb736ef2843f23473c6e37f6180f90f0a35d740ab284321548edf4e55d9a52"},
{file = "shapely-2.0.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:881eb9dbbb4a6419667e91fcb20313bfc1e67f53dbb392c6840ff04793571ed1"},
{file = "shapely-2.0.3-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f10d2ccf0554fc0e39fad5886c839e47e207f99fdf09547bc687a2330efda35b"},
{file = "shapely-2.0.3-cp310-cp310-win32.whl", hash = "sha256:6dfdc077a6fcaf74d3eab23a1ace5abc50c8bce56ac7747d25eab582c5a2990e"},
{file = "shapely-2.0.3-cp310-cp310-win_amd64.whl", hash = "sha256:64c5013dacd2d81b3bb12672098a0b2795c1bf8190cfc2980e380f5ef9d9e4d9"},
{file = "shapely-2.0.3-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:56cee3e4e8159d6f2ce32e421445b8e23154fd02a0ac271d6a6c0b266a8e3cce"},
{file = "shapely-2.0.3-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:619232c8276fded09527d2a9fd91a7885ff95c0ff9ecd5e3cb1e34fbb676e2ae"},
{file = "shapely-2.0.3-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b2a7d256db6f5b4b407dc0c98dd1b2fcf1c9c5814af9416e5498d0a2e4307a4b"},
{file = "shapely-2.0.3-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e45f0c8cd4583647db3216d965d49363e6548c300c23fd7e57ce17a03f824034"},
{file = "shapely-2.0.3-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:13cb37d3826972a82748a450328fe02a931dcaed10e69a4d83cc20ba021bc85f"},
{file = "shapely-2.0.3-cp311-cp311-win32.whl", hash = "sha256:9302d7011e3e376d25acd30d2d9e70d315d93f03cc748784af19b00988fc30b1"},
{file = "shapely-2.0.3-cp311-cp311-win_amd64.whl", hash = "sha256:6b464f2666b13902835f201f50e835f2f153f37741db88f68c7f3b932d3505fa"},
{file = "shapely-2.0.3-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:e86e7cb8e331a4850e0c2a8b2d66dc08d7a7b301b8d1d34a13060e3a5b4b3b55"},
{file = "shapely-2.0.3-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:c91981c99ade980fc49e41a544629751a0ccd769f39794ae913e53b07b2f78b9"},
{file = "shapely-2.0.3-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:bd45d456983dc60a42c4db437496d3f08a4201fbf662b69779f535eb969660af"},
{file = "shapely-2.0.3-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:882fb1ffc7577e88c1194f4f1757e277dc484ba096a3b94844319873d14b0f2d"},
{file = "shapely-2.0.3-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b9f2d93bff2ea52fa93245798cddb479766a18510ea9b93a4fb9755c79474889"},
{file = "shapely-2.0.3-cp312-cp312-win32.whl", hash = "sha256:99abad1fd1303b35d991703432c9481e3242b7b3a393c186cfb02373bf604004"},
{file = "shapely-2.0.3-cp312-cp312-win_amd64.whl", hash = "sha256:6f555fe3304a1f40398977789bc4fe3c28a11173196df9ece1e15c5bc75a48db"},
{file = "shapely-2.0.3-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:a983cc418c1fa160b7d797cfef0e0c9f8c6d5871e83eae2c5793fce6a837fad9"},
{file = "shapely-2.0.3-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:18bddb8c327f392189a8d5d6b9a858945722d0bb95ccbd6a077b8e8fc4c7890d"},
{file = "shapely-2.0.3-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:442f4dcf1eb58c5a4e3428d88e988ae153f97ab69a9f24e07bf4af8038536325"},
{file = "shapely-2.0.3-cp37-cp37m-win32.whl", hash = "sha256:31a40b6e3ab00a4fd3a1d44efb2482278642572b8e0451abdc8e0634b787173e"},
{file = "shapely-2.0.3-cp37-cp37m-win_amd64.whl", hash = "sha256:59b16976c2473fec85ce65cc9239bef97d4205ab3acead4e6cdcc72aee535679"},
{file = "shapely-2.0.3-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:705efbce1950a31a55b1daa9c6ae1c34f1296de71ca8427974ec2f27d57554e3"},
{file = "shapely-2.0.3-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:601c5c0058a6192df704cb889439f64994708563f57f99574798721e9777a44b"},
{file = "shapely-2.0.3-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:f24ecbb90a45c962b3b60d8d9a387272ed50dc010bfe605f1d16dfc94772d8a1"},
{file = "shapely-2.0.3-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8c2a2989222c6062f7a0656e16276c01bb308bc7e5d999e54bf4e294ce62e76"},
{file = "shapely-2.0.3-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:42bceb9bceb3710a774ce04908fda0f28b291323da2688f928b3f213373b5aee"},
{file = "shapely-2.0.3-cp38-cp38-win32.whl", hash = "sha256:54d925c9a311e4d109ec25f6a54a8bd92cc03481a34ae1a6a92c1fe6729b7e01"},
{file = "shapely-2.0.3-cp38-cp38-win_amd64.whl", hash = "sha256:300d203b480a4589adefff4c4af0b13919cd6d760ba3cbb1e56275210f96f654"},
{file = "shapely-2.0.3-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:083d026e97b6c1f4a9bd2a9171c7692461092ed5375218170d91705550eecfd5"},
{file = "shapely-2.0.3-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:27b6e1910094d93e9627f2664121e0e35613262fc037051680a08270f6058daf"},
{file = "shapely-2.0.3-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:71b2de56a9e8c0e5920ae5ddb23b923490557ac50cb0b7fa752761bf4851acde"},
{file = "shapely-2.0.3-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d279e56bbb68d218d63f3efc80c819cedcceef0e64efbf058a1df89dc57201b"},
{file = "shapely-2.0.3-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:88566d01a30f0453f7d038db46bc83ce125e38e47c5f6bfd4c9c287010e9bf74"},
{file = "shapely-2.0.3-cp39-cp39-win32.whl", hash = "sha256:58afbba12c42c6ed44c4270bc0e22f3dadff5656d711b0ad335c315e02d04707"},
{file = "shapely-2.0.3-cp39-cp39-win_amd64.whl", hash = "sha256:5026b30433a70911979d390009261b8c4021ff87c7c3cbd825e62bb2ffa181bc"},
{file = "shapely-2.0.3.tar.gz", hash = "sha256:4d65d0aa7910af71efa72fd6447e02a8e5dd44da81a983de9d736d6e6ccbe674"},
]
[package.dependencies]
numpy = ">=1.14,<2"
[package.extras]
docs = ["matplotlib", "numpydoc (==1.1.*)", "sphinx", "sphinx-book-theme", "sphinx-remove-toctrees"]
test = ["pytest", "pytest-cov"]
[[package]]
name = "tifffile"
version = "2024.2.12"
description = "Read and write TIFF files"
optional = false
python-versions = ">=3.9"
files = [
{file = "tifffile-2024.2.12-py3-none-any.whl", hash = "sha256:870998f82fbc94ff7c3528884c1b0ae54863504ff51dbebea431ac3fa8fb7c21"},
{file = "tifffile-2024.2.12.tar.gz", hash = "sha256:4920a3ec8e8e003e673d3c6531863c99eedd570d1b8b7e141c072ed78ff8030d"},
]
[package.dependencies]
numpy = "*"
[package.extras]
all = ["defusedxml", "fsspec", "imagecodecs (>=2023.8.12)", "lxml", "matplotlib", "zarr"]
[[package]]
name = "typing-extensions"
version = "4.10.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"},
{file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"},
]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "bedbec07c63d805de4503e1158d9f656e675831e9dd69a1e79f993dcf6da0295"

View File

View File

@@ -0,0 +1,378 @@
import collections
import cv2
import gymnasium as gym
import numpy as np
import pygame
import pymunk
import pymunk.pygame_util
import shapely.geometry as sg
import skimage.transform as st
from gymnasium import spaces
from pymunk.vec2d import Vec2d
from pusht.pymunk_override import DrawOptions
def pymunk_to_shapely(body, shapes):
geoms = []
for shape in shapes:
if isinstance(shape, pymunk.shapes.Poly):
verts = [body.local_to_world(v) for v in shape.get_vertices()]
verts += [verts[0]]
geoms.append(sg.Polygon(verts))
else:
raise RuntimeError(f"Unsupported shape type {type(shape)}")
geom = sg.MultiPolygon(geoms)
return geom
class PushTEnv(gym.Env):
metadata = {"render.modes": ["human", "rgb_array"], "video.frames_per_second": 10}
reward_range = (0.0, 1.0)
def __init__(
self,
legacy=True, # compatibility with original
block_cog=None,
damping=None,
render_action=True,
render_size=96,
reset_to_state=None,
):
self._seed = None
self.seed()
self.window_size = ws = 512 # The size of the PyGame window
self.render_size = render_size
self.sim_hz = 100
# Local controller params.
self.k_p, self.k_v = 100, 20 # PD control.z
self.control_hz = self.metadata["video.frames_per_second"]
# legcay set_state for data compatibility
self.legacy = legacy
# agent_pos, block_pos, block_angle
self.observation_space = spaces.Box(
low=np.array([0, 0, 0, 0, 0], dtype=np.float64),
high=np.array([ws, ws, ws, ws, np.pi * 2], dtype=np.float64),
shape=(5,),
dtype=np.float64,
)
# positional goal for agent
self.action_space = spaces.Box(
low=np.array([0, 0], dtype=np.float64),
high=np.array([ws, ws], dtype=np.float64),
shape=(2,),
dtype=np.float64,
)
self.block_cog = block_cog
self.damping = damping
self.render_action = render_action
"""
If human-rendering is used, `self.window` will be a reference
to the window that we draw to. `self.clock` will be a clock that is used
to ensure that the environment is rendered at the correct framerate in
human-mode. They will remain `None` until human-mode is used for the
first time.
"""
self.window = None
self.clock = None
self.screen = None
self.space = None
self.teleop = None
self.render_buffer = None
self.latest_action = None
self.reset_to_state = reset_to_state
def reset(self):
seed = self._seed
self._setup()
if self.block_cog is not None:
self.block.center_of_gravity = self.block_cog
if self.damping is not None:
self.space.damping = self.damping
# use legacy RandomState for compatibility
state = self.reset_to_state
if state is None:
rs = np.random.RandomState(seed=seed)
state = np.array(
[
rs.randint(50, 450),
rs.randint(50, 450),
rs.randint(100, 400),
rs.randint(100, 400),
rs.randn() * 2 * np.pi - np.pi,
]
)
self._set_state(state)
observation = self._get_obs()
return observation
def step(self, action):
dt = 1.0 / self.sim_hz
self.n_contact_points = 0
n_steps = self.sim_hz // self.control_hz
if action is not None:
self.latest_action = action
for _ in range(n_steps):
# Step PD control.
# self.agent.velocity = self.k_p * (act - self.agent.position) # P control works too.
acceleration = self.k_p * (action - self.agent.position) + self.k_v * (
Vec2d(0, 0) - self.agent.velocity
)
self.agent.velocity += acceleration * dt
# Step physics.
self.space.step(dt)
# compute reward
goal_body = self._get_goal_pose_body(self.goal_pose)
goal_geom = pymunk_to_shapely(goal_body, self.block.shapes)
block_geom = pymunk_to_shapely(self.block, self.block.shapes)
intersection_area = goal_geom.intersection(block_geom).area
goal_area = goal_geom.area
coverage = intersection_area / goal_area
reward = np.clip(coverage / self.success_threshold, 0, 1)
done = coverage > self.success_threshold
observation = self._get_obs()
info = self._get_info()
return observation, reward, done, info
def render(self, mode):
return self._render_frame(mode)
def teleop_agent(self):
TeleopAgent = collections.namedtuple("TeleopAgent", ["act"])
def act(obs):
act = None
mouse_position = pymunk.pygame_util.from_pygame(Vec2d(*pygame.mouse.get_pos()), self.screen)
if self.teleop or (mouse_position - self.agent.position).length < 30:
self.teleop = True
act = mouse_position
return act
return TeleopAgent(act)
def _get_obs(self):
obs = np.array(
tuple(self.agent.position) + tuple(self.block.position) + (self.block.angle % (2 * np.pi),)
)
return obs
def _get_goal_pose_body(self, pose):
mass = 1
inertia = pymunk.moment_for_box(mass, (50, 100))
body = pymunk.Body(mass, inertia)
# preserving the legacy assignment order for compatibility
# the order here doesn't matter somehow, maybe because CoM is aligned with body origin
body.position = pose[:2].tolist()
body.angle = pose[2]
return body
def _get_info(self):
n_steps = self.sim_hz // self.control_hz
n_contact_points_per_step = int(np.ceil(self.n_contact_points / n_steps))
info = {
"pos_agent": np.array(self.agent.position),
"vel_agent": np.array(self.agent.velocity),
"block_pose": np.array(list(self.block.position) + [self.block.angle]),
"goal_pose": self.goal_pose,
"n_contacts": n_contact_points_per_step,
}
return info
def _render_frame(self, mode):
if self.window is None and mode == "human":
pygame.init()
pygame.display.init()
self.window = pygame.display.set_mode((self.window_size, self.window_size))
if self.clock is None and mode == "human":
self.clock = pygame.time.Clock()
canvas = pygame.Surface((self.window_size, self.window_size))
canvas.fill((255, 255, 255))
self.screen = canvas
draw_options = DrawOptions(canvas)
# Draw goal pose.
goal_body = self._get_goal_pose_body(self.goal_pose)
for shape in self.block.shapes:
goal_points = [
pymunk.pygame_util.to_pygame(goal_body.local_to_world(v), draw_options.surface)
for v in shape.get_vertices()
]
goal_points += [goal_points[0]]
pygame.draw.polygon(canvas, self.goal_color, goal_points)
# Draw agent and block.
self.space.debug_draw(draw_options)
if mode == "human":
# The following line copies our drawings from `canvas` to the visible window
self.window.blit(canvas, canvas.get_rect())
pygame.event.pump()
pygame.display.update()
# the clock is already ticked during in step for "human"
img = np.transpose(np.array(pygame.surfarray.pixels3d(canvas)), axes=(1, 0, 2))
img = cv2.resize(img, (self.render_size, self.render_size))
if self.render_action and self.latest_action is not None:
action = np.array(self.latest_action)
coord = (action / 512 * 96).astype(np.int32)
marker_size = int(8 / 96 * self.render_size)
thickness = int(1 / 96 * self.render_size)
cv2.drawMarker(
img,
coord,
color=(255, 0, 0),
markerType=cv2.MARKER_CROSS,
markerSize=marker_size,
thickness=thickness,
)
return img
def close(self):
if self.window is not None:
pygame.display.quit()
pygame.quit()
def seed(self, seed=None):
if seed is None:
seed = np.random.randint(0, 25536)
self._seed = seed
self.np_random = np.random.default_rng(seed)
def _handle_collision(self, arbiter, space, data):
self.n_contact_points += len(arbiter.contact_point_set.points)
def _set_state(self, state):
if isinstance(state, np.ndarray):
state = state.tolist()
pos_agent = state[:2]
pos_block = state[2:4]
rot_block = state[4]
self.agent.position = pos_agent
# setting angle rotates with respect to center of mass
# therefore will modify the geometric position
# if not the same as CoM
# therefore should be modified first.
if self.legacy:
# for compatibility with legacy data
self.block.position = pos_block
self.block.angle = rot_block
else:
self.block.angle = rot_block
self.block.position = pos_block
# Run physics to take effect
self.space.step(1.0 / self.sim_hz)
def _set_state_local(self, state_local):
agent_pos_local = state_local[:2]
block_pose_local = state_local[2:]
tf_img_obj = st.AffineTransform(translation=self.goal_pose[:2], rotation=self.goal_pose[2])
tf_obj_new = st.AffineTransform(translation=block_pose_local[:2], rotation=block_pose_local[2])
tf_img_new = st.AffineTransform(matrix=tf_img_obj.params @ tf_obj_new.params)
agent_pos_new = tf_img_new(agent_pos_local)
new_state = np.array(list(agent_pos_new[0]) + list(tf_img_new.translation) + [tf_img_new.rotation])
self._set_state(new_state)
return new_state
def _setup(self):
self.space = pymunk.Space()
self.space.gravity = 0, 0
self.space.damping = 0
self.teleop = False
self.render_buffer = []
# Add walls.
walls = [
self._add_segment((5, 506), (5, 5), 2),
self._add_segment((5, 5), (506, 5), 2),
self._add_segment((506, 5), (506, 506), 2),
self._add_segment((5, 506), (506, 506), 2),
]
self.space.add(*walls)
# Add agent, block, and goal zone.
self.agent = self.add_circle((256, 400), 15)
self.block = self.add_tee((256, 300), 0)
self.goal_color = pygame.Color("LightGreen")
self.goal_pose = np.array([256, 256, np.pi / 4]) # x, y, theta (in radians)
# Add collision handling
self.collision_handeler = self.space.add_collision_handler(0, 0)
self.collision_handeler.post_solve = self._handle_collision
self.n_contact_points = 0
self.max_score = 50 * 100
self.success_threshold = 0.95 # 95% coverage.
def _add_segment(self, a, b, radius):
shape = pymunk.Segment(self.space.static_body, a, b, radius)
shape.color = pygame.Color("LightGray") # https://htmlcolorcodes.com/color-names
return shape
def add_circle(self, position, radius):
body = pymunk.Body(body_type=pymunk.Body.KINEMATIC)
body.position = position
body.friction = 1
shape = pymunk.Circle(body, radius)
shape.color = pygame.Color("RoyalBlue")
self.space.add(body, shape)
return body
def add_box(self, position, height, width):
mass = 1
inertia = pymunk.moment_for_box(mass, (height, width))
body = pymunk.Body(mass, inertia)
body.position = position
shape = pymunk.Poly.create_box(body, (height, width))
shape.color = pygame.Color("LightSlateGray")
self.space.add(body, shape)
return body
def add_tee(self, position, angle, scale=30, color="LightSlateGray", mask=None):
if mask is None:
mask = pymunk.ShapeFilter.ALL_MASKS()
mass = 1
length = 4
vertices1 = [
(-length * scale / 2, scale),
(length * scale / 2, scale),
(length * scale / 2, 0),
(-length * scale / 2, 0),
]
inertia1 = pymunk.moment_for_poly(mass, vertices=vertices1)
vertices2 = [
(-scale / 2, scale),
(-scale / 2, length * scale),
(scale / 2, length * scale),
(scale / 2, scale),
]
inertia2 = pymunk.moment_for_poly(mass, vertices=vertices1)
body = pymunk.Body(mass, inertia1 + inertia2)
shape1 = pymunk.Poly(body, vertices1)
shape2 = pymunk.Poly(body, vertices2)
shape1.color = pygame.Color(color)
shape2.color = pygame.Color(color)
shape1.filter = pymunk.ShapeFilter(mask=mask)
shape2.filter = pymunk.ShapeFilter(mask=mask)
body.center_of_gravity = (shape1.center_of_gravity + shape2.center_of_gravity) / 2
body.position = position
body.angle = angle
body.friction = 1
self.space.add(body, shape1, shape2)
return body

View File

@@ -0,0 +1,41 @@
import numpy as np
from gymnasium import spaces
from pusht.pusht_env import PushTEnv
class PushTImageEnv(PushTEnv):
metadata = {"render.modes": ["rgb_array"], "video.frames_per_second": 10}
# Note: legacy defaults to True for compatibility with original
def __init__(self, legacy=True, block_cog=None, damping=None, render_size=96):
super().__init__(
legacy=legacy, block_cog=block_cog, damping=damping, render_size=render_size, render_action=False
)
ws = self.window_size
self.observation_space = spaces.Dict(
{
"image": spaces.Box(low=0, high=1, shape=(3, render_size, render_size), dtype=np.float32),
"agent_pos": spaces.Box(low=0, high=ws, shape=(2,), dtype=np.float32),
}
)
self.render_cache = None
def _get_obs(self):
img = super()._render_frame(mode="rgb_array")
agent_pos = np.array(self.agent.position)
img_obs = np.moveaxis(img, -1, 0)
obs = {"image": img_obs, "agent_pos": agent_pos}
self.render_cache = img
return obs
def render(self, mode):
assert mode == "rgb_array"
if self.render_cache is None:
self._get_obs()
return self.render_cache

View File

@@ -0,0 +1,244 @@
# ----------------------------------------------------------------------------
# pymunk
# Copyright (c) 2007-2016 Victor Blomqvist
#
# Permission is hereby granted, free of charge, to any person obtaining a copy
# of this software and associated documentation files (the "Software"), to deal
# in the Software without restriction, including without limitation the rights
# to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
# copies of the Software, and to permit persons to whom the Software is
# furnished to do so, subject to the following conditions:
#
# The above copyright notice and this permission notice shall be included in
# all copies or substantial portions of the Software.
#
# THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
# IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
# FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
# AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
# LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
# SOFTWARE.
# ----------------------------------------------------------------------------
"""This submodule contains helper functions to help with quick prototyping
using pymunk together with pygame.
Intended to help with debugging and prototyping, not for actual production use
in a full application. The methods contained in this module is opinionated
about your coordinate system and not in any way optimized.
"""
__docformat__ = "reStructuredText"
__all__ = [
"DrawOptions",
"get_mouse_pos",
"to_pygame",
"from_pygame",
# "lighten",
"positive_y_is_up",
]
from typing import Sequence, Tuple
import numpy as np
import pygame
import pymunk
from pymunk.space_debug_draw_options import SpaceDebugColor
from pymunk.vec2d import Vec2d
positive_y_is_up: bool = False
"""Make increasing values of y point upwards.
When True::
y
^
| . (3, 3)
|
| . (2, 2)
|
+------ > x
When False::
+------ > x
|
| . (2, 2)
|
| . (3, 3)
v
y
"""
class DrawOptions(pymunk.SpaceDebugDrawOptions):
def __init__(self, surface: pygame.Surface) -> None:
"""Draw a pymunk.Space on a pygame.Surface object.
Typical usage::
>>> import pymunk
>>> surface = pygame.Surface((10,10))
>>> space = pymunk.Space()
>>> options = pymunk.pygame_util.DrawOptions(surface)
>>> space.debug_draw(options)
You can control the color of a shape by setting shape.color to the color
you want it drawn in::
>>> c = pymunk.Circle(None, 10)
>>> c.color = pygame.Color("pink")
See pygame_util.demo.py for a full example
Since pygame uses a coordinate system where y points down (in contrast
to many other cases), you either have to make the physics simulation
with Pymunk also behave in that way, or flip everything when you draw.
The easiest is probably to just make the simulation behave the same
way as Pygame does. In that way all coordinates used are in the same
orientation and easy to reason about::
>>> space = pymunk.Space()
>>> space.gravity = (0, -1000)
>>> body = pymunk.Body()
>>> body.position = (0, 0) # will be positioned in the top left corner
>>> space.debug_draw(options)
To flip the drawing its possible to set the module property
:py:data:`positive_y_is_up` to True. Then the pygame drawing will flip
the simulation upside down before drawing::
>>> positive_y_is_up = True
>>> body = pymunk.Body()
>>> body.position = (0, 0)
>>> # Body will be position in bottom left corner
:Parameters:
surface : pygame.Surface
Surface that the objects will be drawn on
"""
self.surface = surface
super().__init__()
def draw_circle(
self,
pos: Vec2d,
angle: float,
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, fill_color.as_int(), p, round(radius), 0)
pygame.draw.circle(self.surface, light_color(fill_color).as_int(), p, round(radius - 4), 0)
# circle_edge = pos + Vec2d(radius, 0).rotated(angle)
# p2 = to_pygame(circle_edge, self.surface)
# line_r = 2 if radius > 20 else 1
# pygame.draw.lines(self.surface, outline_color.as_int(), False, [p, p2], line_r)
def draw_segment(self, a: Vec2d, b: Vec2d, color: SpaceDebugColor) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
pygame.draw.aalines(self.surface, color.as_int(), False, [p1, p2])
def draw_fat_segment(
self,
a: Tuple[float, float],
b: Tuple[float, float],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
p1 = to_pygame(a, self.surface)
p2 = to_pygame(b, self.surface)
r = round(max(1, radius * 2))
pygame.draw.lines(self.surface, fill_color.as_int(), False, [p1, p2], r)
if r > 2:
orthog = [abs(p2[1] - p1[1]), abs(p2[0] - p1[0])]
if orthog[0] == 0 and orthog[1] == 0:
return
scale = radius / (orthog[0] * orthog[0] + orthog[1] * orthog[1]) ** 0.5
orthog[0] = round(orthog[0] * scale)
orthog[1] = round(orthog[1] * scale)
points = [
(p1[0] - orthog[0], p1[1] - orthog[1]),
(p1[0] + orthog[0], p1[1] + orthog[1]),
(p2[0] + orthog[0], p2[1] + orthog[1]),
(p2[0] - orthog[0], p2[1] - orthog[1]),
]
pygame.draw.polygon(self.surface, fill_color.as_int(), points)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p1[0]), round(p1[1])),
round(radius),
)
pygame.draw.circle(
self.surface,
fill_color.as_int(),
(round(p2[0]), round(p2[1])),
round(radius),
)
def draw_polygon(
self,
verts: Sequence[Tuple[float, float]],
radius: float,
outline_color: SpaceDebugColor,
fill_color: SpaceDebugColor,
) -> None:
ps = [to_pygame(v, self.surface) for v in verts]
ps += [ps[0]]
radius = 2
pygame.draw.polygon(self.surface, light_color(fill_color).as_int(), ps)
if radius > 0:
for i in range(len(verts)):
a = verts[i]
b = verts[(i + 1) % len(verts)]
self.draw_fat_segment(a, b, radius, fill_color, fill_color)
def draw_dot(self, size: float, pos: Tuple[float, float], color: SpaceDebugColor) -> None:
p = to_pygame(pos, self.surface)
pygame.draw.circle(self.surface, color.as_int(), p, round(size), 0)
def get_mouse_pos(surface: pygame.Surface) -> Tuple[int, int]:
"""Get position of the mouse pointer in pymunk coordinates."""
p = pygame.mouse.get_pos()
return from_pygame(p, surface)
def to_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pymunk coordinates to pygame surface
local coordinates.
Note that in case positive_y_is_up is False, this function won't actually do
anything except converting the point to integers.
"""
if positive_y_is_up:
return round(p[0]), surface.get_height() - round(p[1])
else:
return round(p[0]), round(p[1])
def from_pygame(p: Tuple[float, float], surface: pygame.Surface) -> Tuple[int, int]:
"""Convenience method to convert pygame surface local coordinates to
pymunk coordinates
"""
return to_pygame(p, surface)
def light_color(color: SpaceDebugColor):
color = np.minimum(1.2 * np.float32([color.r, color.g, color.b, color.a]), np.float32([255]))
color = SpaceDebugColor(r=color[0], g=color[1], b=color[2], a=color[3])
return color

View File

@@ -0,0 +1,37 @@
[tool.poetry]
name = "sim_pusht"
version = "0.1.0"
description = "PushT environment for LeRobot"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
]
maintainers = [
"Alexander Soare <alexander.soare159@gmail.com>",
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
"Simon Alibert <alibert.sim@gmail.com>",
]
readme = "README.md"
license = "Apache-2.0"
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "pusht"}]
[tool.poetry.dependencies]
python = "^3.10"
gymnasium = "^0.29.1"
opencv-python = "^4.9.0.80"
pygame = "^2.5.2"
pymunk = "^6.6.0"
shapely = "^2.0.3"
scikit-image = "^0.22.0"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

1
envs/sim_xarm/README.md Normal file
View File

@@ -0,0 +1 @@
# xArm environment for LeRobot

448
envs/sim_xarm/poetry.lock generated Normal file
View File

@@ -0,0 +1,448 @@
# This file is automatically @generated by Poetry 1.8.2 and should not be changed by hand.
[[package]]
name = "absl-py"
version = "2.1.0"
description = "Abseil Python Common Libraries, see https://github.com/abseil/abseil-py."
optional = false
python-versions = ">=3.7"
files = [
{file = "absl-py-2.1.0.tar.gz", hash = "sha256:7820790efbb316739cde8b4e19357243fc3608a152024288513dd968d7d959ff"},
{file = "absl_py-2.1.0-py3-none-any.whl", hash = "sha256:526a04eadab8b4ee719ce68f204172ead1027549089702d99b9059f129ff1308"},
]
[[package]]
name = "cloudpickle"
version = "3.0.0"
description = "Pickler class to extend the standard pickle.Pickler functionality"
optional = false
python-versions = ">=3.8"
files = [
{file = "cloudpickle-3.0.0-py3-none-any.whl", hash = "sha256:246ee7d0c295602a036e86369c77fecda4ab17b506496730f2f576d9016fd9c7"},
{file = "cloudpickle-3.0.0.tar.gz", hash = "sha256:996d9a482c6fb4f33c1a35335cf8afd065d2a56e973270364840712d9131a882"},
]
[[package]]
name = "farama-notifications"
version = "0.0.4"
description = "Notifications for all Farama Foundation maintained libraries."
optional = false
python-versions = "*"
files = [
{file = "Farama-Notifications-0.0.4.tar.gz", hash = "sha256:13fceff2d14314cf80703c8266462ebf3733c7d165336eee998fc58e545efd18"},
{file = "Farama_Notifications-0.0.4-py3-none-any.whl", hash = "sha256:14de931035a41961f7c056361dc7f980762a143d05791ef5794a751a2caf05ae"},
]
[[package]]
name = "glfw"
version = "2.7.0"
description = "A ctypes-based wrapper for GLFW3."
optional = false
python-versions = "*"
files = [
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_10_6_intel.whl", hash = "sha256:bd82849edcceda4e262bd1227afaa74b94f9f0731c1197863cd25c15bfc613fc"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-macosx_11_0_arm64.whl", hash = "sha256:56ea163c964bb0bc336def2d6a6a1bd42f9db4b870ef834ac77d7b7ee68b8dfc"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_i686.whl", hash = "sha256:463aab9e5567c83d8120556b3a845807c60950ed0218fc1283368f46f5ece331"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2010_x86_64.whl", hash = "sha256:a6f54188dfc349e5426b0ada84843f6eb35a3811d8dbf57ae49c448e7d683bb4"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_aarch64.whl", hash = "sha256:e33568b0aba2045a3d7555f22fcf83fafcacc7c2fc4cb995741894ea51e43ab6"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-manylinux2014_x86_64.whl", hash = "sha256:d8630dd9673860c427abde5b79bbc348e02eccde8a3f2a802c5a2a4fb5d79fb8"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win32.whl", hash = "sha256:ff92d14ac1c7afa9c5deb495c335b485868709880e6e080e99ace7026d74c756"},
{file = "glfw-2.7.0-py2.py27.py3.py30.py31.py32.py33.py34.py35.py36.py37.py38-none-win_amd64.whl", hash = "sha256:20d4b31a5a6a61fb787b25f8408204e0e248313cc500953071d13d30a2e5cc9d"},
{file = "glfw-2.7.0.tar.gz", hash = "sha256:0e209ad38fa8c5be67ca590d7b17533d95ad1eb57d0a3f07b98131db69b79000"},
]
[package.extras]
preview = ["glfw-preview"]
[[package]]
name = "gymnasium"
version = "0.29.1"
description = "A standard API for reinforcement learning and a diverse set of reference environments (formerly Gym)."
optional = false
python-versions = ">=3.8"
files = [
{file = "gymnasium-0.29.1-py3-none-any.whl", hash = "sha256:61c3384b5575985bb7f85e43213bcb40f36fcdff388cae6bc229304c71f2843e"},
{file = "gymnasium-0.29.1.tar.gz", hash = "sha256:1a532752efcb7590478b1cc7aa04f608eb7a2fdad5570cd217b66b6a35274bb1"},
]
[package.dependencies]
cloudpickle = ">=1.2.0"
farama-notifications = ">=0.0.1"
numpy = ">=1.21.0"
typing-extensions = ">=4.3.0"
[package.extras]
accept-rom-license = ["autorom[accept-rom-license] (>=0.4.2,<0.5.0)"]
all = ["box2d-py (==2.3.5)", "cython (<3)", "imageio (>=2.14.1)", "jax (>=0.4.0)", "jaxlib (>=0.4.0)", "lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "mujoco (>=2.3.3)", "mujoco-py (>=2.1,<2.2)", "opencv-python (>=3.0)", "pygame (>=2.1.3)", "shimmy[atari] (>=0.1.0,<1.0)", "swig (==4.*)", "torch (>=1.0.0)"]
atari = ["shimmy[atari] (>=0.1.0,<1.0)"]
box2d = ["box2d-py (==2.3.5)", "pygame (>=2.1.3)", "swig (==4.*)"]
classic-control = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
jax = ["jax (>=0.4.0)", "jaxlib (>=0.4.0)"]
mujoco = ["imageio (>=2.14.1)", "mujoco (>=2.3.3)"]
mujoco-py = ["cython (<3)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "mujoco-py (>=2.1,<2.2)"]
other = ["lz4 (>=3.1.0)", "matplotlib (>=3.0)", "moviepy (>=1.0.0)", "opencv-python (>=3.0)", "torch (>=1.0.0)"]
testing = ["pytest (==7.1.3)", "scipy (>=1.7.3)"]
toy-text = ["pygame (>=2.1.3)", "pygame (>=2.1.3)"]
[[package]]
name = "gymnasium-robotics"
version = "1.2.4"
description = "Robotics environments for the Gymnasium repo."
optional = false
python-versions = ">=3.8"
files = [
{file = "gymnasium-robotics-1.2.4.tar.gz", hash = "sha256:d304192b066f8b800599dfbe3d9d90bba9b761ee884472bdc4d05968a8bc61cb"},
{file = "gymnasium_robotics-1.2.4-py3-none-any.whl", hash = "sha256:c2cb23e087ca0280ae6802837eb7b3a6d14e5bd24c00803ab09f015fcff3eef5"},
]
[package.dependencies]
gymnasium = ">=0.26"
imageio = "*"
Jinja2 = ">=3.0.3"
mujoco = ">=2.3.3,<3.0"
numpy = ">=1.21.0"
PettingZoo = ">=1.23.0"
[package.extras]
mujoco-py = ["cython (<3)", "mujoco-py (>=2.1,<2.2)"]
testing = ["Jinja2 (>=3.0.3)", "PettingZoo (>=1.23.0)", "cython (<3)", "mujoco-py (>=2.1,<2.2)", "pytest (==7.0.1)"]
[[package]]
name = "imageio"
version = "2.34.0"
description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats."
optional = false
python-versions = ">=3.8"
files = [
{file = "imageio-2.34.0-py3-none-any.whl", hash = "sha256:08082bf47ccb54843d9c73fe9fc8f3a88c72452ab676b58aca74f36167e8ccba"},
{file = "imageio-2.34.0.tar.gz", hash = "sha256:ae9732e10acf807a22c389aef193f42215718e16bd06eed0c5bb57e1034a4d53"},
]
[package.dependencies]
numpy = "*"
pillow = ">=8.3.2"
[package.extras]
all-plugins = ["astropy", "av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
all-plugins-pypy = ["av", "imageio-ffmpeg", "pillow-heif", "psutil", "tifffile"]
build = ["wheel"]
dev = ["black", "flake8", "fsspec[github]", "pytest", "pytest-cov"]
docs = ["numpydoc", "pydata-sphinx-theme", "sphinx (<6)"]
ffmpeg = ["imageio-ffmpeg", "psutil"]
fits = ["astropy"]
full = ["astropy", "av", "black", "flake8", "fsspec[github]", "gdal", "imageio-ffmpeg", "itk", "numpydoc", "pillow-heif", "psutil", "pydata-sphinx-theme", "pytest", "pytest-cov", "sphinx (<6)", "tifffile", "wheel"]
gdal = ["gdal"]
itk = ["itk"]
linting = ["black", "flake8"]
pillow-heif = ["pillow-heif"]
pyav = ["av"]
test = ["fsspec[github]", "pytest", "pytest-cov"]
tifffile = ["tifffile"]
[[package]]
name = "jinja2"
version = "3.1.3"
description = "A very fast and expressive template engine."
optional = false
python-versions = ">=3.7"
files = [
{file = "Jinja2-3.1.3-py3-none-any.whl", hash = "sha256:7d6d50dd97d52cbc355597bd845fabfbac3f551e1f99619e39a35ce8c370b5fa"},
{file = "Jinja2-3.1.3.tar.gz", hash = "sha256:ac8bd6544d4bb2c9792bf3a159e80bba8fda7f07e81bc3aed565432d5925ba90"},
]
[package.dependencies]
MarkupSafe = ">=2.0"
[package.extras]
i18n = ["Babel (>=2.7)"]
[[package]]
name = "markupsafe"
version = "2.1.5"
description = "Safely add untrusted strings to HTML/XML markup."
optional = false
python-versions = ">=3.7"
files = [
{file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:a17a92de5231666cfbe003f0e4b9b3a7ae3afb1ec2845aadc2bacc93ff85febc"},
{file = "MarkupSafe-2.1.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:72b6be590cc35924b02c78ef34b467da4ba07e4e0f0454a2c5907f473fc50ce5"},
{file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e61659ba32cf2cf1481e575d0462554625196a1f2fc06a1c777d3f48e8865d46"},
{file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:2174c595a0d73a3080ca3257b40096db99799265e1c27cc5a610743acd86d62f"},
{file = "MarkupSafe-2.1.5-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ae2ad8ae6ebee9d2d94b17fb62763125f3f374c25618198f40cbb8b525411900"},
{file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:075202fa5b72c86ad32dc7d0b56024ebdbcf2048c0ba09f1cde31bfdd57bcfff"},
{file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:598e3276b64aff0e7b3451b72e94fa3c238d452e7ddcd893c3ab324717456bad"},
{file = "MarkupSafe-2.1.5-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fce659a462a1be54d2ffcacea5e3ba2d74daa74f30f5f143fe0c58636e355fdd"},
{file = "MarkupSafe-2.1.5-cp310-cp310-win32.whl", hash = "sha256:d9fad5155d72433c921b782e58892377c44bd6252b5af2f67f16b194987338a4"},
{file = "MarkupSafe-2.1.5-cp310-cp310-win_amd64.whl", hash = "sha256:bf50cd79a75d181c9181df03572cdce0fbb75cc353bc350712073108cba98de5"},
{file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:629ddd2ca402ae6dbedfceeba9c46d5f7b2a61d9749597d4307f943ef198fc1f"},
{file = "MarkupSafe-2.1.5-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:5b7b716f97b52c5a14bffdf688f971b2d5ef4029127f1ad7a513973cfd818df2"},
{file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6ec585f69cec0aa07d945b20805be741395e28ac1627333b1c5b0105962ffced"},
{file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b91c037585eba9095565a3556f611e3cbfaa42ca1e865f7b8015fe5c7336d5a5"},
{file = "MarkupSafe-2.1.5-cp311-cp311-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7502934a33b54030eaf1194c21c692a534196063db72176b0c4028e140f8f32c"},
{file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:0e397ac966fdf721b2c528cf028494e86172b4feba51d65f81ffd65c63798f3f"},
{file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:c061bb86a71b42465156a3ee7bd58c8c2ceacdbeb95d05a99893e08b8467359a"},
{file = "MarkupSafe-2.1.5-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:3a57fdd7ce31c7ff06cdfbf31dafa96cc533c21e443d57f5b1ecc6cdc668ec7f"},
{file = "MarkupSafe-2.1.5-cp311-cp311-win32.whl", hash = "sha256:397081c1a0bfb5124355710fe79478cdbeb39626492b15d399526ae53422b906"},
{file = "MarkupSafe-2.1.5-cp311-cp311-win_amd64.whl", hash = "sha256:2b7c57a4dfc4f16f7142221afe5ba4e093e09e728ca65c51f5620c9aaeb9a617"},
{file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_universal2.whl", hash = "sha256:8dec4936e9c3100156f8a2dc89c4b88d5c435175ff03413b443469c7c8c5f4d1"},
{file = "MarkupSafe-2.1.5-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:3c6b973f22eb18a789b1460b4b91bf04ae3f0c4234a0a6aa6b0a92f6f7b951d4"},
{file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ac07bad82163452a6884fe8fa0963fb98c2346ba78d779ec06bd7a6262132aee"},
{file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f5dfb42c4604dddc8e4305050aa6deb084540643ed5804d7455b5df8fe16f5e5"},
{file = "MarkupSafe-2.1.5-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ea3d8a3d18833cf4304cd2fc9cbb1efe188ca9b5efef2bdac7adc20594a0e46b"},
{file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:d050b3361367a06d752db6ead6e7edeb0009be66bc3bae0ee9d97fb326badc2a"},
{file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_i686.whl", hash = "sha256:bec0a414d016ac1a18862a519e54b2fd0fc8bbfd6890376898a6c0891dd82e9f"},
{file = "MarkupSafe-2.1.5-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:58c98fee265677f63a4385256a6d7683ab1832f3ddd1e66fe948d5880c21a169"},
{file = "MarkupSafe-2.1.5-cp312-cp312-win32.whl", hash = "sha256:8590b4ae07a35970728874632fed7bd57b26b0102df2d2b233b6d9d82f6c62ad"},
{file = "MarkupSafe-2.1.5-cp312-cp312-win_amd64.whl", hash = "sha256:823b65d8706e32ad2df51ed89496147a42a2a6e01c13cfb6ffb8b1e92bc910bb"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:c8b29db45f8fe46ad280a7294f5c3ec36dbac9491f2d1c17345be8e69cc5928f"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ec6a563cff360b50eed26f13adc43e61bc0c04d94b8be985e6fb24b81f6dcfdf"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a549b9c31bec33820e885335b451286e2969a2d9e24879f83fe904a5ce59d70a"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4f11aa001c540f62c6166c7726f71f7573b52c68c31f014c25cc7901deea0b52"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:7b2e5a267c855eea6b4283940daa6e88a285f5f2a67f2220203786dfa59b37e9"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:2d2d793e36e230fd32babe143b04cec8a8b3eb8a3122d2aceb4a371e6b09b8df"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:ce409136744f6521e39fd8e2a24c53fa18ad67aa5bc7c2cf83645cce5b5c4e50"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-win32.whl", hash = "sha256:4096e9de5c6fdf43fb4f04c26fb114f61ef0bf2e5604b6ee3019d51b69e8c371"},
{file = "MarkupSafe-2.1.5-cp37-cp37m-win_amd64.whl", hash = "sha256:4275d846e41ecefa46e2015117a9f491e57a71ddd59bbead77e904dc02b1bed2"},
{file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:656f7526c69fac7f600bd1f400991cc282b417d17539a1b228617081106feb4a"},
{file = "MarkupSafe-2.1.5-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:97cafb1f3cbcd3fd2b6fbfb99ae11cdb14deea0736fc2b0952ee177f2b813a46"},
{file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1f3fbcb7ef1f16e48246f704ab79d79da8a46891e2da03f8783a5b6fa41a9532"},
{file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:fa9db3f79de01457b03d4f01b34cf91bc0048eb2c3846ff26f66687c2f6d16ab"},
{file = "MarkupSafe-2.1.5-cp38-cp38-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ffee1f21e5ef0d712f9033568f8344d5da8cc2869dbd08d87c84656e6a2d2f68"},
{file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:5dedb4db619ba5a2787a94d877bc8ffc0566f92a01c0ef214865e54ecc9ee5e0"},
{file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:30b600cf0a7ac9234b2638fbc0fb6158ba5bdcdf46aeb631ead21248b9affbc4"},
{file = "MarkupSafe-2.1.5-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8dd717634f5a044f860435c1d8c16a270ddf0ef8588d4887037c5028b859b0c3"},
{file = "MarkupSafe-2.1.5-cp38-cp38-win32.whl", hash = "sha256:daa4ee5a243f0f20d528d939d06670a298dd39b1ad5f8a72a4275124a7819eff"},
{file = "MarkupSafe-2.1.5-cp38-cp38-win_amd64.whl", hash = "sha256:619bc166c4f2de5caa5a633b8b7326fbe98e0ccbfacabd87268a2b15ff73a029"},
{file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:7a68b554d356a91cce1236aa7682dc01df0edba8d043fd1ce607c49dd3c1edcf"},
{file = "MarkupSafe-2.1.5-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:db0b55e0f3cc0be60c1f19efdde9a637c32740486004f20d1cff53c3c0ece4d2"},
{file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3e53af139f8579a6d5f7b76549125f0d94d7e630761a2111bc431fd820e163b8"},
{file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b950fccb810b3293638215058e432159d2b71005c74371d784862b7e4683f3"},
{file = "MarkupSafe-2.1.5-cp39-cp39-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4c31f53cdae6ecfa91a77820e8b151dba54ab528ba65dfd235c80b086d68a465"},
{file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:bff1b4290a66b490a2f4719358c0cdcd9bafb6b8f061e45c7a2460866bf50c2e"},
{file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:bc1667f8b83f48511b94671e0e441401371dfd0f0a795c7daa4a3cd1dde55bea"},
{file = "MarkupSafe-2.1.5-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:5049256f536511ee3f7e1b3f87d1d1209d327e818e6ae1365e8653d7e3abb6a6"},
{file = "MarkupSafe-2.1.5-cp39-cp39-win32.whl", hash = "sha256:00e046b6dd71aa03a41079792f8473dc494d564611a8f89bbbd7cb93295ebdcf"},
{file = "MarkupSafe-2.1.5-cp39-cp39-win_amd64.whl", hash = "sha256:fa173ec60341d6bb97a89f5ea19c85c5643c1e7dedebc22f5181eb73573142c5"},
{file = "MarkupSafe-2.1.5.tar.gz", hash = "sha256:d283d37a890ba4c1ae73ffadf8046435c76e7bc2247bbb63c00bd1a709c6544b"},
]
[[package]]
name = "mujoco"
version = "2.3.7"
description = "MuJoCo Physics Simulator"
optional = false
python-versions = ">=3.8"
files = [
{file = "mujoco-2.3.7-cp310-cp310-macosx_10_16_x86_64.whl", hash = "sha256:e8714a5ff6a1561b364b7b4648d4c0c8d13e751874cf7401c309b9d23fa9598b"},
{file = "mujoco-2.3.7-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:a934315f858a4e0c4b90a682fde519471cfdd7baa64435179da8cd20d4ae3f99"},
{file = "mujoco-2.3.7-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:36513024330f88b5f9a43558efef5692b33599bffd5141029b690a27918ffcbe"},
{file = "mujoco-2.3.7-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6d4eede8ba8210fbd3d3cd1dbf69e24dd1541aa74c5af5b8adbbbf65504b6dba"},
{file = "mujoco-2.3.7-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ab85fafc9d5a091c712947573b7e694512d283876bf7f33ae3f8daad3a20c0db"},
{file = "mujoco-2.3.7-cp310-cp310-win_amd64.whl", hash = "sha256:f8b7e13fef8c813d91b78f975ed0815157692777907ffa4b4be53a4edb75019b"},
{file = "mujoco-2.3.7-cp311-cp311-macosx_10_16_x86_64.whl", hash = "sha256:779520216f72a8e370e3f0cdd71b45c3b7384c63331a3189194c930a3e7cff5c"},
{file = "mujoco-2.3.7-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9d4018053879016282d27ab7a91e292c72d44efb5a88553feacfe5b843dde103"},
{file = "mujoco-2.3.7-cp311-cp311-macosx_11_0_x86_64.whl", hash = "sha256:3149b16b8122ee62642474bfd2871064e8edc40235471cf5d84be3569afc0312"},
{file = "mujoco-2.3.7-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:c08660a8d52ef3efde76095f0991e807703a950c1e882d2bcd984b9a846626f7"},
{file = "mujoco-2.3.7-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:426af8965f8636d94a0f75740c3024a62b3e585020ee817ef5208ec844a1ad94"},
{file = "mujoco-2.3.7-cp311-cp311-win_amd64.whl", hash = "sha256:215415a8e98a4b50625beae859079d5e0810b2039e50420f0ba81763c34abb59"},
{file = "mujoco-2.3.7-cp38-cp38-macosx_10_16_x86_64.whl", hash = "sha256:8b78d14f4c60cea3c58e046bd4de453fb5b9b33aca6a25fc91d39a53f3a5342a"},
{file = "mujoco-2.3.7-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:5c6f5a51d6f537a4bf294cf73816f3a6384573f8f10a5452b044df2771412a96"},
{file = "mujoco-2.3.7-cp38-cp38-macosx_11_0_x86_64.whl", hash = "sha256:ea8911e6047f92d7d775701f37e4c093971b6def3160f01d0b6926e29a7e962e"},
{file = "mujoco-2.3.7-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7473a3de4dd1a8762d569ffb139196b4c5e7eca27d256df97b6cd4c66d2a09b2"},
{file = "mujoco-2.3.7-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:40e7e2d8f93d2495ec74efec84e5118ecc6e1d85157a844789c73c9ac9a4e28e"},
{file = "mujoco-2.3.7-cp38-cp38-win_amd64.whl", hash = "sha256:720bc228a2023b3b0ed6af78f5b0f8ea36867be321d473321555c57dbf6e4e5b"},
{file = "mujoco-2.3.7-cp39-cp39-macosx_10_16_x86_64.whl", hash = "sha256:855e79686366442aa410246043b44f7d842d3900d68fe7e37feb42147db9d707"},
{file = "mujoco-2.3.7-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:98947f4a742d34d36f3c3f83e9167025bb0414bbaa4bd859b0673bdab9959963"},
{file = "mujoco-2.3.7-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:d42818f2ee5d1632dbce31d136ed5ff868db54b04e4e9aca0c5a3ac329f8a90f"},
{file = "mujoco-2.3.7-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9237e1ba14bced9449c31199e6d5be49547f3a4c99bc83b196af7ca45fd73b83"},
{file = "mujoco-2.3.7-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:39b728ea638245b150e2650c5433e6952e0ed3798c63e47e264574270caea2a3"},
{file = "mujoco-2.3.7-cp39-cp39-win_amd64.whl", hash = "sha256:9c721a5042b99d948d5f0296a534bcce3f142c777c4d7642f503a539513f3912"},
{file = "mujoco-2.3.7.tar.gz", hash = "sha256:422041f1ce37c6d151fbced1048df626837e94fe3cd9f813585907046336a7d0"},
]
[package.dependencies]
absl-py = "*"
glfw = "*"
numpy = "*"
pyopengl = "*"
[[package]]
name = "numpy"
version = "1.26.4"
description = "Fundamental package for array computing in Python"
optional = false
python-versions = ">=3.9"
files = [
{file = "numpy-1.26.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9ff0f4f29c51e2803569d7a51c2304de5554655a60c5d776e35b4a41413830d0"},
{file = "numpy-1.26.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2e4ee3380d6de9c9ec04745830fd9e2eccb3e6cf790d39d7b98ffd19b0dd754a"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d209d8969599b27ad20994c8e41936ee0964e6da07478d6c35016bc386b66ad4"},
{file = "numpy-1.26.4-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:ffa75af20b44f8dba823498024771d5ac50620e6915abac414251bd971b4529f"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:62b8e4b1e28009ef2846b4c7852046736bab361f7aeadeb6a5b89ebec3c7055a"},
{file = "numpy-1.26.4-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:a4abb4f9001ad2858e7ac189089c42178fcce737e4169dc61321660f1a96c7d2"},
{file = "numpy-1.26.4-cp310-cp310-win32.whl", hash = "sha256:bfe25acf8b437eb2a8b2d49d443800a5f18508cd811fea3181723922a8a82b07"},
{file = "numpy-1.26.4-cp310-cp310-win_amd64.whl", hash = "sha256:b97fe8060236edf3662adfc2c633f56a08ae30560c56310562cb4f95500022d5"},
{file = "numpy-1.26.4-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:4c66707fabe114439db9068ee468c26bbdf909cac0fb58686a42a24de1760c71"},
{file = "numpy-1.26.4-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:edd8b5fe47dab091176d21bb6de568acdd906d1887a4584a15a9a96a1dca06ef"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7ab55401287bfec946ced39700c053796e7cc0e3acbef09993a9ad2adba6ca6e"},
{file = "numpy-1.26.4-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:666dbfb6ec68962c033a450943ded891bed2d54e6755e35e5835d63f4f6931d5"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:96ff0b2ad353d8f990b63294c8986f1ec3cb19d749234014f4e7eb0112ceba5a"},
{file = "numpy-1.26.4-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:60dedbb91afcbfdc9bc0b1f3f402804070deed7392c23eb7a7f07fa857868e8a"},
{file = "numpy-1.26.4-cp311-cp311-win32.whl", hash = "sha256:1af303d6b2210eb850fcf03064d364652b7120803a0b872f5211f5234b399f20"},
{file = "numpy-1.26.4-cp311-cp311-win_amd64.whl", hash = "sha256:cd25bcecc4974d09257ffcd1f098ee778f7834c3ad767fe5db785be9a4aa9cb2"},
{file = "numpy-1.26.4-cp312-cp312-macosx_10_9_x86_64.whl", hash = "sha256:b3ce300f3644fb06443ee2222c2201dd3a89ea6040541412b8fa189341847218"},
{file = "numpy-1.26.4-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:03a8c78d01d9781b28a6989f6fa1bb2c4f2d51201cf99d3dd875df6fbd96b23b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9fad7dcb1aac3c7f0584a5a8133e3a43eeb2fe127f47e3632d43d677c66c102b"},
{file = "numpy-1.26.4-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:675d61ffbfa78604709862923189bad94014bef562cc35cf61d3a07bba02a7ed"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:ab47dbe5cc8210f55aa58e4805fe224dac469cde56b9f731a4c098b91917159a"},
{file = "numpy-1.26.4-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:1dda2e7b4ec9dd512f84935c5f126c8bd8b9f2fc001e9f54af255e8c5f16b0e0"},
{file = "numpy-1.26.4-cp312-cp312-win32.whl", hash = "sha256:50193e430acfc1346175fcbdaa28ffec49947a06918b7b92130744e81e640110"},
{file = "numpy-1.26.4-cp312-cp312-win_amd64.whl", hash = "sha256:08beddf13648eb95f8d867350f6a018a4be2e5ad54c8d8caed89ebca558b2818"},
{file = "numpy-1.26.4-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:7349ab0fa0c429c82442a27a9673fc802ffdb7c7775fad780226cb234965e53c"},
{file = "numpy-1.26.4-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:52b8b60467cd7dd1e9ed082188b4e6bb35aa5cdd01777621a1658910745b90be"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5241e0a80d808d70546c697135da2c613f30e28251ff8307eb72ba696945764"},
{file = "numpy-1.26.4-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f870204a840a60da0b12273ef34f7051e98c3b5961b61b0c2c1be6dfd64fbcd3"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:679b0076f67ecc0138fd2ede3a8fd196dddc2ad3254069bcb9faf9a79b1cebcd"},
{file = "numpy-1.26.4-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:47711010ad8555514b434df65f7d7b076bb8261df1ca9bb78f53d3b2db02e95c"},
{file = "numpy-1.26.4-cp39-cp39-win32.whl", hash = "sha256:a354325ee03388678242a4d7ebcd08b5c727033fcff3b2f536aea978e15ee9e6"},
{file = "numpy-1.26.4-cp39-cp39-win_amd64.whl", hash = "sha256:3373d5d70a5fe74a2c1bb6d2cfd9609ecf686d47a2d7b1d37a8f3b6bf6003aea"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:afedb719a9dcfc7eaf2287b839d8198e06dcd4cb5d276a3df279231138e83d30"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:95a7476c59002f2f6c590b9b7b998306fba6a5aa646b1e22ddfeaf8f78c3a29c"},
{file = "numpy-1.26.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:7e50d0a0cc3189f9cb0aeb3a6a6af18c16f59f004b866cd2be1c14b36134a4a0"},
{file = "numpy-1.26.4.tar.gz", hash = "sha256:2a02aba9ed12e4ac4eb3ea9421c420301a0c6460d9830d74a9df87efa4912010"},
]
[[package]]
name = "pettingzoo"
version = "1.24.3"
description = "Gymnasium for multi-agent reinforcement learning."
optional = false
python-versions = ">=3.8"
files = [
{file = "pettingzoo-1.24.3-py3-none-any.whl", hash = "sha256:23ed90517d2e8a7098bdaf5e31234b3a7f7b73ca578d70d1ca7b9d0cb0e37982"},
{file = "pettingzoo-1.24.3.tar.gz", hash = "sha256:91f9094f18e06fb74b98f4099cd22e8ae4396125e51719d50b30c9f1c7ab07e6"},
]
[package.dependencies]
gymnasium = ">=0.28.0"
numpy = ">=1.21.0"
[package.extras]
all = ["box2d-py (==2.3.5)", "chess (==1.9.4)", "multi-agent-ale-py (==0.1.11)", "pillow (>=8.0.1)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "rlcard (==1.0.5)", "scipy (>=1.4.1)", "shimmy[openspiel] (>=1.2.0)"]
atari = ["multi-agent-ale-py (==0.1.11)", "pygame (==2.3.0)"]
butterfly = ["pygame (==2.3.0)", "pymunk (==6.2.0)"]
classic = ["chess (==1.9.4)", "pygame (==2.3.0)", "rlcard (==1.0.5)", "shimmy[openspiel] (>=1.2.0)"]
mpe = ["pygame (==2.3.0)"]
other = ["pillow (>=8.0.1)"]
sisl = ["box2d-py (==2.3.5)", "pygame (==2.3.0)", "pymunk (==6.2.0)", "scipy (>=1.4.1)"]
testing = ["AutoROM", "pre-commit", "pynput", "pytest", "pytest-cov", "pytest-markdown-docs", "pytest-xdist"]
[[package]]
name = "pillow"
version = "10.2.0"
description = "Python Imaging Library (Fork)"
optional = false
python-versions = ">=3.8"
files = [
{file = "pillow-10.2.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:7823bdd049099efa16e4246bdf15e5a13dbb18a51b68fa06d6c1d4d8b99a796e"},
{file = "pillow-10.2.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:83b2021f2ade7d1ed556bc50a399127d7fb245e725aa0113ebd05cfe88aaf588"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6fad5ff2f13d69b7e74ce5b4ecd12cc0ec530fcee76356cac6742785ff71c452"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:da2b52b37dad6d9ec64e653637a096905b258d2fc2b984c41ae7d08b938a67e4"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_aarch64.whl", hash = "sha256:47c0995fc4e7f79b5cfcab1fc437ff2890b770440f7696a3ba065ee0fd496563"},
{file = "pillow-10.2.0-cp310-cp310-manylinux_2_28_x86_64.whl", hash = "sha256:322bdf3c9b556e9ffb18f93462e5f749d3444ce081290352c6070d014c93feb2"},
{file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:51f1a1bffc50e2e9492e87d8e09a17c5eea8409cda8d3f277eb6edc82813c17c"},
{file = "pillow-10.2.0-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:69ffdd6120a4737710a9eee73e1d2e37db89b620f702754b8f6e62594471dee0"},
{file = "pillow-10.2.0-cp310-cp310-win32.whl", hash = "sha256:c6dafac9e0f2b3c78df97e79af707cdc5ef8e88208d686a4847bab8266870023"},
{file = "pillow-10.2.0-cp310-cp310-win_amd64.whl", hash = "sha256:aebb6044806f2e16ecc07b2a2637ee1ef67a11840a66752751714a0d924adf72"},
{file = "pillow-10.2.0-cp310-cp310-win_arm64.whl", hash = "sha256:7049e301399273a0136ff39b84c3678e314f2158f50f517bc50285fb5ec847ad"},
{file = "pillow-10.2.0-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:35bb52c37f256f662abdfa49d2dfa6ce5d93281d323a9af377a120e89a9eafb5"},
{file = "pillow-10.2.0-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:9c23f307202661071d94b5e384e1e1dc7dfb972a28a2310e4ee16103e66ddb67"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:773efe0603db30c281521a7c0214cad7836c03b8ccff897beae9b47c0b657d61"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:11fa2e5984b949b0dd6d7a94d967743d87c577ff0b83392f17cb3990d0d2fd6e"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_aarch64.whl", hash = "sha256:716d30ed977be8b37d3ef185fecb9e5a1d62d110dfbdcd1e2a122ab46fddb03f"},
{file = "pillow-10.2.0-cp311-cp311-manylinux_2_28_x86_64.whl", hash = "sha256:a086c2af425c5f62a65e12fbf385f7c9fcb8f107d0849dba5839461a129cf311"},
{file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:c8de2789052ed501dd829e9cae8d3dcce7acb4777ea4a479c14521c942d395b1"},
{file = "pillow-10.2.0-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:609448742444d9290fd687940ac0b57fb35e6fd92bdb65386e08e99af60bf757"},
{file = "pillow-10.2.0-cp311-cp311-win32.whl", hash = "sha256:823ef7a27cf86df6597fa0671066c1b596f69eba53efa3d1e1cb8b30f3533068"},
{file = "pillow-10.2.0-cp311-cp311-win_amd64.whl", hash = "sha256:1da3b2703afd040cf65ec97efea81cfba59cdbed9c11d8efc5ab09df9509fc56"},
{file = "pillow-10.2.0-cp311-cp311-win_arm64.whl", hash = "sha256:edca80cbfb2b68d7b56930b84a0e45ae1694aeba0541f798e908a49d66b837f1"},
{file = "pillow-10.2.0-cp312-cp312-macosx_10_10_x86_64.whl", hash = "sha256:1b5e1b74d1bd1b78bc3477528919414874748dd363e6272efd5abf7654e68bef"},
{file = "pillow-10.2.0-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:0eae2073305f451d8ecacb5474997c08569fb4eb4ac231ffa4ad7d342fdc25ac"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b7c2286c23cd350b80d2fc9d424fc797575fb16f854b831d16fd47ceec078f2c"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1e23412b5c41e58cec602f1135c57dfcf15482013ce6e5f093a86db69646a5aa"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_aarch64.whl", hash = "sha256:52a50aa3fb3acb9cf7213573ef55d31d6eca37f5709c69e6858fe3bc04a5c2a2"},
{file = "pillow-10.2.0-cp312-cp312-manylinux_2_28_x86_64.whl", hash = "sha256:127cee571038f252a552760076407f9cff79761c3d436a12af6000cd182a9d04"},
{file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_aarch64.whl", hash = "sha256:8d12251f02d69d8310b046e82572ed486685c38f02176bd08baf216746eb947f"},
{file = "pillow-10.2.0-cp312-cp312-musllinux_1_1_x86_64.whl", hash = "sha256:54f1852cd531aa981bc0965b7d609f5f6cc8ce8c41b1139f6ed6b3c54ab82bfb"},
{file = "pillow-10.2.0-cp312-cp312-win32.whl", hash = "sha256:257d8788df5ca62c980314053197f4d46eefedf4e6175bc9412f14412ec4ea2f"},
{file = "pillow-10.2.0-cp312-cp312-win_amd64.whl", hash = "sha256:154e939c5f0053a383de4fd3d3da48d9427a7e985f58af8e94d0b3c9fcfcf4f9"},
{file = "pillow-10.2.0-cp312-cp312-win_arm64.whl", hash = "sha256:f379abd2f1e3dddb2b61bc67977a6b5a0a3f7485538bcc6f39ec76163891ee48"},
{file = "pillow-10.2.0-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:8373c6c251f7ef8bda6675dd6d2b3a0fcc31edf1201266b5cf608b62a37407f9"},
{file = "pillow-10.2.0-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:870ea1ada0899fd0b79643990809323b389d4d1d46c192f97342eeb6ee0b8483"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b4b6b1e20608493548b1f32bce8cca185bf0480983890403d3b8753e44077129"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:3031709084b6e7852d00479fd1d310b07d0ba82765f973b543c8af5061cf990e"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_aarch64.whl", hash = "sha256:3ff074fc97dd4e80543a3e91f69d58889baf2002b6be64347ea8cf5533188213"},
{file = "pillow-10.2.0-cp38-cp38-manylinux_2_28_x86_64.whl", hash = "sha256:cb4c38abeef13c61d6916f264d4845fab99d7b711be96c326b84df9e3e0ff62d"},
{file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:b1b3020d90c2d8e1dae29cf3ce54f8094f7938460fb5ce8bc5c01450b01fbaf6"},
{file = "pillow-10.2.0-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:170aeb00224ab3dc54230c797f8404507240dd868cf52066f66a41b33169bdbe"},
{file = "pillow-10.2.0-cp38-cp38-win32.whl", hash = "sha256:c4225f5220f46b2fde568c74fca27ae9771536c2e29d7c04f4fb62c83275ac4e"},
{file = "pillow-10.2.0-cp38-cp38-win_amd64.whl", hash = "sha256:0689b5a8c5288bc0504d9fcee48f61a6a586b9b98514d7d29b840143d6734f39"},
{file = "pillow-10.2.0-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:b792a349405fbc0163190fde0dc7b3fef3c9268292586cf5645598b48e63dc67"},
{file = "pillow-10.2.0-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:c570f24be1e468e3f0ce7ef56a89a60f0e05b30a3669a459e419c6eac2c35364"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8ecd059fdaf60c1963c58ceb8997b32e9dc1b911f5da5307aab614f1ce5c2fb"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c365fd1703040de1ec284b176d6af5abe21b427cb3a5ff68e0759e1e313a5e7e"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_aarch64.whl", hash = "sha256:70c61d4c475835a19b3a5aa42492409878bbca7438554a1f89d20d58a7c75c01"},
{file = "pillow-10.2.0-cp39-cp39-manylinux_2_28_x86_64.whl", hash = "sha256:b6f491cdf80ae540738859d9766783e3b3c8e5bd37f5dfa0b76abdecc5081f13"},
{file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:9d189550615b4948f45252d7f005e53c2040cea1af5b60d6f79491a6e147eef7"},
{file = "pillow-10.2.0-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:49d9ba1ed0ef3e061088cd1e7538a0759aab559e2e0a80a36f9fd9d8c0c21591"},
{file = "pillow-10.2.0-cp39-cp39-win32.whl", hash = "sha256:babf5acfede515f176833ed6028754cbcd0d206f7f614ea3447d67c33be12516"},
{file = "pillow-10.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:0304004f8067386b477d20a518b50f3fa658a28d44e4116970abfcd94fac34a8"},
{file = "pillow-10.2.0-cp39-cp39-win_arm64.whl", hash = "sha256:0fb3e7fc88a14eacd303e90481ad983fd5b69c761e9e6ef94c983f91025da869"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-macosx_10_10_x86_64.whl", hash = "sha256:322209c642aabdd6207517e9739c704dc9f9db943015535783239022002f054a"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3eedd52442c0a5ff4f887fab0c1c0bb164d8635b32c894bc1faf4c618dd89df2"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:cb28c753fd5eb3dd859b4ee95de66cc62af91bcff5db5f2571d32a520baf1f04"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:33870dc4653c5017bf4c8873e5488d8f8d5f8935e2f1fb9a2208c47cdd66efd2"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:3c31822339516fb3c82d03f30e22b1d038da87ef27b6a78c9549888f8ceda39a"},
{file = "pillow-10.2.0-pp310-pypy310_pp73-win_amd64.whl", hash = "sha256:a2b56ba36e05f973d450582fb015594aaa78834fefe8dfb8fcd79b93e64ba4c6"},
{file = "pillow-10.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:d8e6aeb9201e655354b3ad049cb77d19813ad4ece0df1249d3c793de3774f8c7"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:2247178effb34a77c11c0e8ac355c7a741ceca0a732b27bf11e747bbc950722f"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:15587643b9e5eb26c48e49a7b33659790d28f190fc514a322d55da2fb5c2950e"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:753cd8f2086b2b80180d9b3010dd4ed147efc167c90d3bf593fe2af21265e5a5"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_aarch64.whl", hash = "sha256:7c8f97e8e7a9009bcacbe3766a36175056c12f9a44e6e6f2d5caad06dcfbf03b"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-manylinux_2_28_x86_64.whl", hash = "sha256:d1b35bcd6c5543b9cb547dee3150c93008f8dd0f1fef78fc0cd2b141c5baf58a"},
{file = "pillow-10.2.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:fe4c15f6c9285dc54ce6553a3ce908ed37c8f3825b5a51a15c91442bb955b868"},
{file = "pillow-10.2.0.tar.gz", hash = "sha256:e87f0b2c78157e12d7686b27d63c070fd65d994e8ddae6f328e0dcf4a0cd007e"},
]
[package.extras]
docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-removed-in", "sphinxext-opengraph"]
fpx = ["olefile"]
mic = ["olefile"]
tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"]
typing = ["typing-extensions"]
xmp = ["defusedxml"]
[[package]]
name = "pyopengl"
version = "3.1.7"
description = "Standard OpenGL bindings for Python"
optional = false
python-versions = "*"
files = [
{file = "PyOpenGL-3.1.7-py3-none-any.whl", hash = "sha256:a6ab19cf290df6101aaf7470843a9c46207789855746399d0af92521a0a92b7a"},
{file = "PyOpenGL-3.1.7.tar.gz", hash = "sha256:eef31a3888e6984fd4d8e6c9961b184c9813ca82604d37fe3da80eb000a76c86"},
]
[[package]]
name = "typing-extensions"
version = "4.10.0"
description = "Backported and Experimental Type Hints for Python 3.8+"
optional = false
python-versions = ">=3.8"
files = [
{file = "typing_extensions-4.10.0-py3-none-any.whl", hash = "sha256:69b1a937c3a517342112fb4c6df7e72fc39a38e7891a5730ed4985b5214b5475"},
{file = "typing_extensions-4.10.0.tar.gz", hash = "sha256:b0abd7c89e8fb96f98db18d86106ff1d90ab692004eb746cf6eda2682f91b3cb"},
]
[metadata]
lock-version = "2.0"
python-versions = "^3.10"
content-hash = "165d82035aade2abad497b32e156ec18d8ebc6c57a36376c3351b593c6889f22"

View File

@@ -0,0 +1,34 @@
[tool.poetry]
name = "sim_xarm"
version = "0.1.0"
description = "xArm environment for LeRobot"
authors = [
"Rémi Cadène <re.cadene@gmail.com>",
]
maintainers = [
"Alexander Soare <alexander.soare159@gmail.com>",
"Quentin Gallouédec <quentin.gallouedec@ec-lyon.fr>",
"Simon Alibert <alibert.sim@gmail.com>",
]
readme = "README.md"
license = "Apache-2.0"
classifiers=[
"Development Status :: 3 - Alpha",
"Intended Audience :: Developers",
"Topic :: Software Development :: Build Tools",
"License :: OSI Approved :: Apache Software License",
"Programming Language :: Python :: 3.10",
]
packages = [{include = "xarm"}]
[tool.poetry.dependencies]
python = "^3.10"
mujoco = "^2.3.7"
gymnasium = "^0.29.1"
gymnasium-robotics = "^1.2.4"
[build-system]
requires = ["poetry-core"]
build-backend = "poetry.core.masonry.api"

View File

@@ -0,0 +1,166 @@
from collections import OrderedDict, deque
import gymnasium as gym
import numpy as np
from gymnasium.wrappers import TimeLimit
from xarm.tasks.base import Base as Base
from xarm.tasks.lift import Lift
from xarm.tasks.peg_in_box import PegInBox
from xarm.tasks.push import Push
from xarm.tasks.reach import Reach
TASKS = OrderedDict(
(
(
"reach",
{
"env": Reach,
"action_space": "xyz",
"episode_length": 50,
"description": "Reach a target location with the end effector",
},
),
(
"push",
{
"env": Push,
"action_space": "xyz",
"episode_length": 50,
"description": "Push a cube to a target location",
},
),
(
"peg_in_box",
{
"env": PegInBox,
"action_space": "xyz",
"episode_length": 50,
"description": "Insert a peg into a box",
},
),
(
"lift",
{
"env": Lift,
"action_space": "xyzw",
"episode_length": 50,
"description": "Lift a cube above a height threshold",
},
),
)
)
class SimXarmWrapper(gym.Wrapper):
"""
A wrapper for the SimXarm environments. This wrapper is used to
convert the action and observation spaces to the correct format.
"""
def __init__(self, env, task, obs_mode, image_size, action_repeat, frame_stack=1, channel_last=False):
super().__init__(env)
self._env = env
self.obs_mode = obs_mode
self.image_size = image_size
self.action_repeat = action_repeat
self.frame_stack = frame_stack
self._frames = deque([], maxlen=frame_stack)
self.channel_last = channel_last
self._max_episode_steps = task["episode_length"] // action_repeat
image_shape = (
(image_size, image_size, 3 * frame_stack)
if channel_last
else (3 * frame_stack, image_size, image_size)
)
if obs_mode == "state":
self.observation_space = env.observation_space["observation"]
elif obs_mode == "rgb":
self.observation_space = gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8)
elif obs_mode == "all":
self.observation_space = gym.spaces.Dict(
state=gym.spaces.Box(low=-np.inf, high=np.inf, shape=(4,), dtype=np.float32),
rgb=gym.spaces.Box(low=0, high=255, shape=image_shape, dtype=np.uint8),
)
else:
raise ValueError(f"Unknown obs_mode {obs_mode}. Must be one of [rgb, all, state]")
self.action_space = gym.spaces.Box(low=-1.0, high=1.0, shape=(len(task["action_space"]),))
self.action_padding = np.zeros(4 - len(task["action_space"]), dtype=np.float32)
if "w" not in task["action_space"]:
self.action_padding[-1] = 1.0
def _render_obs(self):
obs = self.render(mode="rgb_array", width=self.image_size, height=self.image_size)
if not self.channel_last:
obs = obs.transpose(2, 0, 1)
return obs.copy()
def _update_frames(self, reset=False):
pixels = self._render_obs()
self._frames.append(pixels)
if reset:
for _ in range(1, self.frame_stack):
self._frames.append(pixels)
assert len(self._frames) == self.frame_stack
def transform_obs(self, obs, reset=False):
if self.obs_mode == "state":
return obs["observation"]
elif self.obs_mode == "rgb":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return rgb_obs
elif self.obs_mode == "all":
self._update_frames(reset=reset)
rgb_obs = np.concatenate(list(self._frames), axis=-1 if self.channel_last else 0)
return OrderedDict((("rgb", rgb_obs), ("state", self.robot_state)))
else:
raise ValueError(f"Unknown obs_mode {self.obs_mode}. Must be one of [rgb, all, state]")
def reset(self):
return self.transform_obs(self._env.reset(), reset=True)
def step(self, action):
action = np.concatenate([action, self.action_padding])
reward = 0.0
for _ in range(self.action_repeat):
obs, r, done, info = self._env.step(action)
reward += r
return self.transform_obs(obs), reward, done, info
def render(self, mode="rgb_array", width=384, height=384, **kwargs):
return self._env.render(mode, width=width, height=height)
@property
def state(self):
return self._env.robot_state
def make(task, obs_mode="state", image_size=84, action_repeat=1, frame_stack=1, channel_last=False, seed=0):
"""
Create a new environment.
Args:
task (str): The task to create an environment for. Must be one of:
- 'reach'
- 'push'
- 'peg-in-box'
- 'lift'
obs_mode (str): The observation mode to use. Must be one of:
- 'state': Only state observations
- 'rgb': RGB images
- 'all': RGB images and state observations
image_size (int): The size of the image observations
action_repeat (int): The number of times to repeat the action
seed (int): The random seed to use
Returns:
gym.Env: The environment
"""
if task not in TASKS:
raise ValueError(f"Unknown task {task}. Must be one of {list(TASKS.keys())}")
env = TASKS[task]["env"]()
env = TimeLimit(env, TASKS[task]["episode_length"])
env = SimXarmWrapper(env, TASKS[task], obs_mode, image_size, action_repeat, frame_stack, channel_last)
env.seed(seed)
return env

View File

View File

@@ -0,0 +1,53 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="20.0 20.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 1 1"></geom>
</body>
<body name="object" pos="1.405 0.3 0.58625">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.035 0.035 0.035" type="box" name="object0" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.035 0.035 0.035" rgba="1 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:21fb81ae7fba19e3c6b2d2ca60c8051712ba273357287eb5a397d92d61c7a736
size 1211434

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:be68ce180d11630a667a5f37f4dffcc3feebe4217d4bb3912c813b6d9ca3ec66
size 3284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:2c6448552bf6b1c4f17334d686a5320ce051bcdfe31431edf69303d8a570d1de
size 3284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:748b9e197e6521914f18d1f6383a36f211136b3f33f2ad2a8c11b9f921c2cf86
size 6284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:a44756eb72f9c214cb37e61dc209cd7073fdff3e4271a7423476ef6fd090d2d4
size 242684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:e8e48692ad26837bb3d6a97582c89784d09948fc09bfe4e5a59017859ff04dac
size 366284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:501665812b08d67e764390db781e839adc6896a9540301d60adf606f57648921
size 22284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:34b541122df84d2ef5fcb91b715eb19659dc15ad8d44a191dde481f780265636
size 184184

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:61e641cd47c169ecef779683332e00e4914db729bf02dfb61bfbe69351827455
size 225584

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:9e2798e7946dd70046c95455d5ba96392d0b54a6069caba91dc4ca66e1379b42
size 237084

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c757fee95f873191a0633c355c07a360032960771cabbd7593a6cdb0f1ffb089
size 243684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:715ad5787c5dab57589937fd47289882707b5e1eb997e340d567785b02f4ec90
size 229084

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:85b320aa420497827223d16d492bba8de091173374e361396fc7a5dad7bdb0cb
size 399384

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:97115d848fbf802cb770cd9be639ae2af993103b9d9bbb0c50c943c738a36f18
size 231684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:f6fcbc18258090eb56c21cfb17baa5ae43abc98b1958cd366f3a73b9898fc7f0
size 2106184

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:c5dee87c7f37baf554b8456ebfe0b3e8ed0b22b8938bd1add6505c2ad6d32c7d
size 242684

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:b41dd2c2c550281bf78d7cc6fa117b14786700e5c453560a0cb5fd6dfa0ffb3e
size 366284

View File

@@ -0,0 +1,3 @@
version https://git-lfs.github.com/spec/v1
oid sha256:75ca1107d0a42a0f03802a9a49cab48419b31851ee8935f8f1ca06be1c1c91e8
size 22284

View File

@@ -0,0 +1,74 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.001">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="box0" pos="1.605 0.25 0.55">
<joint name="box_joint0" type="free" limited="false"></joint>
<site name="box_site" pos="0 0.075 -0.01" size="0.02" rgba="0 0 0 0" type="sphere"></site>
<geom name="box_side0" pos="0 0 0" size="0.065 0.002 0.04" type= "box" rgba="0.8 0.1 0.1 1" mass ="1" condim="4" />
<geom name="box_side1" pos="0 0.149 0" size="0.065 0.002 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side2" pos="0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.8 0.1 0.1 1" mass ="2" condim="4" />
<geom name="box_side3" pos="-0.064 0.074 0" size="0.002 0.075 0.04" type="box" rgba="0.9 0.2 0.2 1" mass ="2" condim="4" />
<geom name="box_side4" pos="-0 0.074 -0.038" size="0.065 0.075 0.002" type="box" rgba="0.5 0 0 1" mass ="2" condim="4"/>
</body>
<body name="object0" pos="1.4 0.25 0.65">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom name="object_target0" type="cylinder" pos="0 0 -0.05" size="0.03 0.035" rgba="0.6 0.8 0.5 1" mass ="0.1" condim="3" />
<site name="object_site" pos="0 0 -0.05" size="0.0325 0.0375" rgba="0 0 0 0" type="cylinder"></site>
<body name="B0" pos="0 0 0" euler="0 0 0 ">
<joint name="B0:joint" type="slide" limited="true" axis="0 0 1" damping="0.05" range="0.0001 0.0001001" solimpfriction="0.98 0.98 0.95" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.03" rgba="0 0 0 1" mass="0.001" condim="4"/>
<body name="B1" pos="0 0 0.04" euler="0 3.14 0 ">
<joint name="B1:joint1" type="hinge" axis="1 0 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint2" type="hinge" axis="0 1 0" range="-0.1 0.1" frictionloss="1"></joint>
<joint name="B1:joint3" type="hinge" axis="0 0 1" range="-0.1 0.1" frictionloss="1"></joint>
<geom type="capsule" size="0.002 0.004" rgba="1 0 0 0" mass="0.001" condim="4"/>
</body>
</body>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<weld body1="right_hand" body2="B1" solimp="0.99 0.99 0.99" solref="0.02 1"></weld>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@@ -0,0 +1,54 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.565 0.3 0.545" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<body name="object" pos="1.655 0.3 0.68">
<joint name="object_joint0" type="free" limited="false"></joint>
<geom size="0.024 0.024 0.024" type="box" name="object" material="block_mat" density="50000" condim="4" friction="1 1 1" solimp="1 1 1" solref="0.02 1"></geom>
<site name="object_site" pos="0 0 0" size="0.024 0.024 0.024" rgba="0 0 0 0" type="box"></site>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@@ -0,0 +1,48 @@
<?xml version="1.0" encoding="utf-8"?>
<mujoco>
<compiler angle="radian" coordinate="local" meshdir="mesh" texturedir="texture"></compiler>
<size nconmax="2000" njmax="500"/>
<option timestep="0.002">
<flag warmstart="enable"></flag>
</option>
<include file="shared.xml"></include>
<worldbody>
<body name="floor0" pos="0 0 0">
<geom name="floorgeom0" pos="1.2 -2.0 0" size="1.0 10.0 1" type="plane" condim="3" material="floor_mat"></geom>
<site name="target0" pos="1.605 0.3 0.58" size="0.0475 0.001" rgba="1 0 0 1" type="cylinder"></site>
</body>
<include file="xarm.xml"></include>
<body pos="0.75 0 0.6325" name="pedestal0">
<geom name="pedestalgeom0" size="0.1 0.1 0.01" pos="0.32 0.27 0" type="box" mass="2000" material="pedestal_mat"></geom>
<site pos="0.30 0.30 0" size="0.075 0.075 0.002" type="box" name="robotmountsite0" rgba="0.55 0.54 0.53 1" />
</body>
<body pos="1.5 0.075 0.3425" name="table0">
<geom name="tablegeom0" size="0.3 0.6 0.2" pos="0 0 0" type="box" material="table_mat" density="2000" friction="1 0.005 0.0002"></geom>
</body>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="1.65 0 10" dir="-0.57 -0.57 -0.57" name="light0"></light>
<light directional="true" ambient="0.1 0.1 0.1" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="0 -4 4" dir="0 1 -0.1" name="light1"></light>
<light directional="true" ambient="0.05 0.05 0.05" diffuse="0 0 0" specular="0 0 0" castshadow="false" pos="2.13 1.6 2.5" name="light2"></light>
<light pos="0 0 2" dir="0.2 0.2 -0.8" directional="true" diffuse="0.3 0.3 0.3" castshadow="false" name="light3"></light>
<camera fovy="50" name="camera0" pos="0.9559 1.0 1.1" euler="-1.1 -0.6 3.4" />
</worldbody>
<equality>
<connect body2="left_finger" body1="left_inner_knuckle" anchor="0.0 0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<connect body2="right_finger" body1="right_inner_knuckle" anchor="0.0 -0.035 0.042" solimp="0.9 0.95 0.001 0.5 2" solref="0.0002 1.0" ></connect>
<joint joint1="left_inner_knuckle_joint" joint2="right_inner_knuckle_joint"></joint>
</equality>
<actuator>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="left_inner_knuckle_joint" gear="200.0"/>
<motor ctrllimited="true" ctrlrange="-1.0 1.0" joint="right_inner_knuckle_joint" gear="200.0"/>
</actuator>
</mujoco>

View File

@@ -0,0 +1,51 @@
<mujoco>
<asset>
<texture type="skybox" builtin="gradient" rgb1="0.0 0.0 0.0" rgb2="0.0 0.0 0.0" width="32" height="32"></texture>
<material name="floor_mat" specular="0" shininess="0.0" reflectance="0" rgba="0.043 0.055 0.051 1"></material>
<material name="table_mat" specular="0.2" shininess="0.2" reflectance="0" rgba="1 1 1 1"></material>
<material name="pedestal_mat" specular="0.35" shininess="0.5" reflectance="0" rgba="0.705 0.585 0.405 1"></material>
<material name="block_mat" specular="0.5" shininess="0.9" reflectance="0.05" rgba="0.373 0.678 0.627 1"></material>
<material name="robot0:geomMat" shininess="0.03" specular="0.4"></material>
<material name="robot0:gripper_finger_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="background:gripper_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:arm_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:head_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:torso_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<material name="robot0:base_mat" shininess="0.03" specular="0.4" reflectance="0"></material>
<mesh name="link_base" file="link_base.stl" />
<mesh name="link1" file="link1.stl" />
<mesh name="link2" file="link2.stl" />
<mesh name="link3" file="link3.stl" />
<mesh name="link4" file="link4.stl" />
<mesh name="link5" file="link5.stl" />
<mesh name="link6" file="link6.stl" />
<mesh name="link7" file="link7.stl" />
<mesh name="base_link" file="base_link.stl" />
<mesh name="left_outer_knuckle" file="left_outer_knuckle.stl" />
<mesh name="left_finger" file="left_finger.stl" />
<mesh name="left_inner_knuckle" file="left_inner_knuckle.stl" />
<mesh name="right_outer_knuckle" file="right_outer_knuckle.stl" />
<mesh name="right_finger" file="right_finger.stl" />
<mesh name="right_inner_knuckle" file="right_inner_knuckle.stl" />
</asset>
<equality>
<weld body1="robot0:mocap2" body2="link7" solimp="0.9 0.95 0.001" solref="0.02 1"></weld>
</equality>
<default>
<joint armature="1" damping="0.1" limited="true"/>
<default class="robot0:blue">
<geom rgba="0.086 0.506 0.767 1.0"></geom>
</default>
<default class="robot0:grey">
<geom rgba="0.356 0.361 0.376 1.0"></geom>
</default>
</default>
</mujoco>

View File

@@ -0,0 +1,88 @@
<mujoco model="xarm7">
<body mocap="true" name="robot0:mocap2" pos="0 0 0">
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0.5 0 0" size="0.005 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0 0 0" size="1 0.005 0.005" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0 0 0.5 0" size="0.005 1 0.001" type="box"></geom>
<geom conaffinity="0" contype="0" pos="0 0 0" rgba="0.5 0.5 0 0" size="0.005 0.005 1" type="box"></geom>
</body>
<body name="link0" pos="1.09 0.28 0.655">
<geom name="bb" type="mesh" mesh="link_base" material="robot0:base_mat" rgba="1 1 1 1"/>
<body name="link1" pos="0 0 0.267">
<inertial pos="-0.0042142 0.02821 -0.0087788" quat="0.917781 -0.277115 0.0606681 0.277858" mass="0.42603" diaginertia="0.00144551 0.00137757 0.000823511" />
<joint name="joint1" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="10" frictionloss="1" />
<geom name="j1" type="mesh" mesh="link1" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link2" pos="0 0 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-3.3178e-05 -0.12849 0.026337" quat="0.447793 0.894132 -0.00224061 0.00218314" mass="0.56095" diaginertia="0.00319151 0.00311598 0.000980804" />
<joint name="joint2" pos="0 0 0" axis="0 0 1" limited="true" range="-2.059 2.0944" damping="10" frictionloss="1" />
<geom name="j2" type="mesh" mesh="link2" material="robot0:head_mat" rgba="1 1 1 1"/>
<body name="link3" pos="0 -0.293 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.04223 -0.023258 -0.0096674" quat="0.883205 0.339803 0.323238 0.000542237" mass="0.44463" diaginertia="0.00133227 0.00119126 0.000780475" />
<joint name="joint3" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j3" type="mesh" mesh="link3" material="robot0:gripper_mat" rgba="1 1 1 1"/>
<body name="link4" pos="0.0525 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.067148 -0.10732 0.024479" quat="0.0654142 0.483317 -0.738663 0.465298" mass="0.52387" diaginertia="0.00288984 0.00282705 0.000894409" />
<joint name="joint4" pos="0 0 0" axis="0 0 1" limited="true" range="-0.19198 3.927" damping="5" frictionloss="1" />
<geom name="j4" type="mesh" mesh="link4" material="robot0:arm_mat" rgba="1 1 1 1"/>
<body name="link5" pos="0.0775 -0.3425 0" quat="0.707105 0.707108 0 0">
<inertial pos="-0.00023397 0.036705 -0.080064" quat="0.981064 -0.19003 0.00637998 0.0369004" mass="0.18554" diaginertia="0.00099553 0.000988613 0.000247126" />
<joint name="joint5" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="5" frictionloss="1" />
<geom name="j5" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link5" />
<body name="link6" pos="0 0 0" quat="0.707105 0.707108 0 0">
<inertial pos="0.058911 0.028469 0.0068428" quat="-0.188705 0.793535 0.166088 0.554173" mass="0.31344" diaginertia="0.000827892 0.000768871 0.000386708" />
<joint name="joint6" pos="0 0 0" axis="0 0 1" limited="true" range="-1.69297 3.14159" damping="2" frictionloss="1" />
<geom name="j6" type="mesh" material="robot0:gripper_mat" rgba="1 1 1 1" mesh="link6" />
<body name="link7" pos="0.076 0.097 0" quat="0.707105 -0.707108 0 0">
<inertial pos="-0.000420033 -0.00287433 0.0257078" quat="0.999372 -0.0349129 -0.00605634 0.000551744" mass="0.85624" diaginertia="0.00137671 0.00118744 0.000514968" />
<joint name="joint7" pos="0 0 0" axis="0 0 1" limited="true" range="-6.28319 6.28319" damping="2" frictionloss="1" />
<geom name="j8" material="robot0:gripper_mat" type="mesh" rgba="0.753 0.753 0.753 1" mesh="link7" />
<geom name="j9" material="robot0:gripper_mat" type="mesh" rgba="1 1 1 1" mesh="base_link" />
<site name="grasp" pos="0 0 0.16" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
<body name="left_outer_knuckle" pos="0 0.035 0.059098">
<inertial pos="0 0.021559 0.015181" quat="0.47789 0.87842 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="drive_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_outer_knuckle" />
<body name="left_finger" pos="0 0.035465 0.042039">
<inertial pos="0 -0.016413 0.029258" quat="0.697634 0.115353 -0.115353 0.697634" mass="0.048304" diaginertia="1.88037e-05 1.7493e-05 3.56792e-06" />
<joint name="left_finger_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom name="j10" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="left_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="right_hand" pos="0 -0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee" pos="0 0 0" rgba="0 0 1 0" type="sphere" group="1"/>
<site name="ee_x" pos="0 0 0" size="0.005 .1" quat="0.707105 0.707108 0 0 " rgba="1 0 0 0" type="cylinder" group="1"/>
<site name="ee_z" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0 0.707108" rgba="0 0 1 0" type="cylinder" group="1"/>
<site name="ee_y" pos="0 0 0" size="0.005 .1" quat="0.707105 0 0.707108 0 " rgba="0 1 0 0" type="cylinder" group="1"/>
</body>
</body>
</body>
<body name="left_inner_knuckle" pos="0 0.02 0.074098">
<inertial pos="1.86601e-06 0.0220468 0.0261335" quat="0.664139 -0.242732 0.242713 0.664146" mass="0.0230126" diaginertia="8.34216e-06 6.0949e-06 2.75601e-06" />
<joint name="left_inner_knuckle_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="left_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
<body name="right_outer_knuckle" pos="0 -0.035 0.059098">
<inertial pos="0 -0.021559 0.015181" quat="0.87842 0.47789 0 0" mass="0.033618" diaginertia="1.9111e-05 1.79089e-05 1.90167e-06" />
<joint name="right_outer_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_outer_knuckle" />
<body name="right_finger" pos="0 -0.035465 0.042039">
<inertial pos="0 0.016413 0.029258" quat="0.697634 -0.115356 0.115356 0.697634" mass="0.048304" diaginertia="1.88038e-05 1.7493e-05 3.56779e-06" />
<joint name="right_finger_joint" pos="0 0 0" axis="1 0 0" limited="true" range="0 0.85" />
<geom name="j11" material="robot0:gripper_finger_mat" type="mesh" rgba="0 0 0 1" conaffinity="3" contype="2" mesh="right_finger" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
<body name="left_hand" pos="0 0.03 0.05" quat="-0.7071 0 0 0.7071">
<site name="ee_2" pos="0 0 0" rgba="1 0 0 0" type="sphere" size="0.01" group="1"/>
</body>
</body>
</body>
<body name="right_inner_knuckle" pos="0 -0.02 0.074098">
<inertial pos="1.866e-06 -0.022047 0.026133" quat="0.66415 0.242702 -0.242721 0.664144" mass="0.023013" diaginertia="8.34209e-06 6.0949e-06 2.75601e-06" />
<joint name="right_inner_knuckle_joint" pos="0 0 0" axis="-1 0 0" limited="true" range="0 0.85" />
<geom type="mesh" rgba="0 0 0 1" conaffinity="1" contype="0" mesh="right_inner_knuckle" friction='1.5 1.5 1.5' solref='0.01 1' solimp='0.99 0.99 0.01'/>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</body>
</mujoco>

View File

@@ -0,0 +1,145 @@
import os
import mujoco
import numpy as np
from gymnasium_robotics.envs import robot_env
from xarm.tasks import mocap
class Base(robot_env.MujocoRobotEnv):
"""
Superclass for all simxarm environments.
Args:
xml_name (str): name of the xml environment file
gripper_rotation (list): initial rotation of the gripper (given as a quaternion)
"""
def __init__(self, xml_name, gripper_rotation=None):
if gripper_rotation is None:
gripper_rotation = [0, 1, 0, 0]
self.gripper_rotation = np.array(gripper_rotation, dtype=np.float32)
self.center_of_table = np.array([1.655, 0.3, 0.63625])
self.max_z = 1.2
self.min_z = 0.2
super().__init__(
model_path=os.path.join(os.path.dirname(__file__), "assets", xml_name + ".xml"),
n_substeps=20,
n_actions=4,
initial_qpos={},
)
@property
def dt(self):
return self.n_substeps * self.model.opt.timestep
@property
def eef(self):
return self._utils.get_site_xpos(self.model, self.data, "grasp")
@property
def obj(self):
return self._utils.get_site_xpos(self.model, self.data, "object_site")
@property
def robot_state(self):
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
return np.concatenate([self.eef, gripper_angle])
def is_success(self):
return NotImplementedError()
def get_reward(self):
raise NotImplementedError()
def _sample_goal(self):
raise NotImplementedError()
def get_obs(self):
return self._get_obs()
def _step_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _limit_gripper(self, gripper_pos, pos_ctrl):
if gripper_pos[0] > self.center_of_table[0] - 0.105 + 0.15:
pos_ctrl[0] = min(pos_ctrl[0], 0)
if gripper_pos[0] < self.center_of_table[0] - 0.105 - 0.3:
pos_ctrl[0] = max(pos_ctrl[0], 0)
if gripper_pos[1] > self.center_of_table[1] + 0.3:
pos_ctrl[1] = min(pos_ctrl[1], 0)
if gripper_pos[1] < self.center_of_table[1] - 0.3:
pos_ctrl[1] = max(pos_ctrl[1], 0)
if gripper_pos[2] > self.max_z:
pos_ctrl[2] = min(pos_ctrl[2], 0)
if gripper_pos[2] < self.min_z:
pos_ctrl[2] = max(pos_ctrl[2], 0)
return pos_ctrl
def _apply_action(self, action):
assert action.shape == (4,)
action = action.copy()
pos_ctrl, gripper_ctrl = action[:3], action[3]
pos_ctrl = self._limit_gripper(
self._utils.get_site_xpos(self.model, self.data, "grasp"), pos_ctrl
) * (1 / self.n_substeps)
gripper_ctrl = np.array([gripper_ctrl, gripper_ctrl])
mocap.apply_action(
self.model,
self._model_names,
self.data,
np.concatenate([pos_ctrl, self.gripper_rotation, gripper_ctrl]),
)
def _render_callback(self):
self._mujoco.mj_forward(self.model, self.data)
def _reset_sim(self):
self.data.time = self.initial_time
self.data.qpos[:] = np.copy(self.initial_qpos)
self.data.qvel[:] = np.copy(self.initial_qvel)
self._sample_goal()
self._mujoco.mj_step(self.model, self.data, nstep=10)
return True
def _set_gripper(self, gripper_pos, gripper_rotation):
self._utils.set_mocap_pos(self.model, self.data, "robot0:mocap", gripper_pos)
self._utils.set_mocap_quat(self.model, self.data, "robot0:mocap", gripper_rotation)
self._utils.set_joint_qpos(self.model, self.data, "right_outer_knuckle_joint", 0)
self.data.qpos[10] = 0.0
self.data.qpos[12] = 0.0
def _env_setup(self, initial_qpos):
for name, value in initial_qpos.items():
self.data.set_joint_qpos(name, value)
mocap.reset(self.model, self.data)
mujoco.mj_forward(self.model, self.data)
self._sample_goal()
mujoco.mj_forward(self.model, self.data)
def reset(self):
self._reset_sim()
return self._get_obs()
def step(self, action):
assert action.shape == (4,)
assert self.action_space.contains(action), "{!r} ({}) invalid".format(action, type(action))
self._apply_action(action)
self._mujoco.mj_step(self.model, self.data, nstep=2)
self._step_callback()
obs = self._get_obs()
reward = self.get_reward()
done = False
info = {"is_success": self.is_success(), "success": self.is_success()}
return obs, reward, done, info
def render(self, mode="rgb_array", width=384, height=384):
self._render_callback()
# HACK
self.model.vis.global_.offwidth = width
self.model.vis.global_.offheight = height
return self.mujoco_renderer.render(mode)
def close(self):
if self.mujoco_renderer is not None:
self.mujoco_renderer.close()

View File

@@ -0,0 +1,100 @@
import numpy as np
from xarm import Base
class Lift(Base):
def __init__(self):
self._z_threshold = 0.15
super().__init__("lift")
@property
def z_target(self):
return self._init_z + self._z_threshold
def is_success(self):
return self.obj[2] >= self.z_target
def get_reward(self):
reach_dist = np.linalg.norm(self.obj - self.eef)
reach_dist_xy = np.linalg.norm(self.obj[:-1] - self.eef[:-1])
pick_completed = self.obj[2] >= (self.z_target - 0.01)
obj_dropped = (self.obj[2] < (self._init_z + 0.005)) and (reach_dist > 0.02)
# Reach
if reach_dist < 0.05:
reach_reward = -reach_dist + max(self._action[-1], 0) / 50
elif reach_dist_xy < 0.05:
reach_reward = -reach_dist
else:
z_bonus = np.linalg.norm(np.linalg.norm(self.obj[-1] - self.eef[-1]))
reach_reward = -reach_dist - 2 * z_bonus
# Pick
if pick_completed and not obj_dropped:
pick_reward = self.z_target
elif (reach_dist < 0.1) and (self.obj[2] > (self._init_z + 0.005)):
pick_reward = min(self.z_target, self.obj[2])
else:
pick_reward = 0
return reach_reward / 100 + pick_reward
def _get_obs(self):
eef_velp = self._utils.get_site_xvelp(self.model, self.data, "grasp") * self.dt
gripper_angle = self._utils.get_joint_qpos(self.model, self.data, "right_outer_knuckle_joint")
eef = self.eef - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")[-4:]
obj_velp = self._utils.get_site_xvelp(self.model, self.data, "object_site") * self.dt
obj_velr = self._utils.get_site_xvelr(self.model, self.data, "object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - obj,
np.array(
[
np.linalg.norm(eef - obj),
np.linalg.norm(eef[:-1] - obj[:-1]),
self.z_target,
self.z_target - obj[-1],
self.z_target - eef[-1],
]
),
gripper_angle,
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": eef}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.15, 0.10, 0.07])
object_pos[0] += self.np_random.uniform(-0.05, 0.05, size=1)
object_pos[1] += self.np_random.uniform(-0.05, 0.05, size=1)
object_qpos = self._utils.get_joint_qpos(self.model, self.data, "object_joint0")
object_qpos[:3] = object_pos
self._utils.set_joint_qpos(self.model, self.data, "object_joint0", object_qpos)
self._init_z = object_pos[2]
# Goal
return object_pos + np.array([0, 0, self._z_threshold])
def reset(self):
self._action = np.zeros(4)
return super().reset()
def step(self, action):
self._action = action.copy()
return super().step(action)

View File

@@ -0,0 +1,67 @@
# import mujoco_py
import mujoco
import numpy as np
def apply_action(model, model_names, data, action):
if model.nmocap > 0:
pos_action, gripper_action = np.split(action, (model.nmocap * 7,))
if data.ctrl is not None:
for i in range(gripper_action.shape[0]):
data.ctrl[i] = gripper_action[i]
pos_action = pos_action.reshape(model.nmocap, 7)
pos_delta, quat_delta = pos_action[:, :3], pos_action[:, 3:]
reset_mocap2body_xpos(model, model_names, data)
data.mocap_pos[:] = data.mocap_pos + pos_delta
data.mocap_quat[:] = data.mocap_quat + quat_delta
def reset(model, data):
if model.nmocap > 0 and model.eq_data is not None:
for i in range(model.eq_data.shape[0]):
# if sim.model.eq_type[i] == mujoco_py.const.EQ_WELD:
if model.eq_type[i] == mujoco.mjtEq.mjEQ_WELD:
# model.eq_data[i, :] = np.array([0., 0., 0., 1., 0., 0., 0.])
model.eq_data[i, :] = np.array(
[
0.0,
0.0,
0.0,
1.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
0.0,
]
)
# sim.forward()
mujoco.mj_forward(model, data)
def reset_mocap2body_xpos(model, model_names, data):
if model.eq_type is None or model.eq_obj1id is None or model.eq_obj2id is None:
return
# For all weld constraints
for eq_type, obj1_id, obj2_id in zip(model.eq_type, model.eq_obj1id, model.eq_obj2id, strict=False):
# if eq_type != mujoco_py.const.EQ_WELD:
if eq_type != mujoco.mjtEq.mjEQ_WELD:
continue
# body2 = model.body_id2name(obj2_id)
body2 = model_names.body_id2name[obj2_id]
if body2 == "B0" or body2 == "B9" or body2 == "B1":
continue
mocap_id = model.body_mocapid[obj1_id]
if mocap_id != -1:
# obj1 is the mocap, obj2 is the welded body
body_idx = obj2_id
else:
# obj2 is the mocap, obj1 is the welded body
mocap_id = model.body_mocapid[obj2_id]
body_idx = obj1_id
assert mocap_id != -1
data.mocap_pos[mocap_id][:] = data.xpos[body_idx]
data.mocap_quat[mocap_id][:] = data.xquat[body_idx]

View File

@@ -0,0 +1,86 @@
import numpy as np
from xarm import Base
class PegInBox(Base):
def __init__(self):
super().__init__("peg_in_box")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
for _ in range(10):
self._apply_action(np.array([0, 0, 0, 1], dtype=np.float32))
self.sim.step()
@property
def box(self):
return self.sim.data.get_site_xpos("box_site")
def is_success(self):
return np.linalg.norm(self.obj - self.box) <= 0.05
def get_reward(self):
dist_xy = np.linalg.norm(self.obj[:2] - self.box[:2])
dist_xyz = np.linalg.norm(self.obj - self.box)
return float(dist_xy <= 0.045) * (2 - 6 * dist_xyz) - 0.2 * np.square(self._act_magnitude) - dist_xy
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, box = self.eef - self.center_of_table, self.box - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
box,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - box,
eef - obj,
obj - box,
np.array(
[
np.linalg.norm(eef - box),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - box),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": box}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.9]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = gripper_pos - np.array([0, 0, 0.06]) + self.np_random.uniform(-0.005, 0.005, size=3)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Box
box_pos = np.array([1.61, 0.18, 0.58])
box_pos[:2] += self.np_random.uniform(-0.11, 0.11, size=2)
box_qpos = self.sim.data.get_joint_qpos("box_joint0")
box_qpos[:3] = box_pos
self.sim.data.set_joint_qpos("box_joint0", box_qpos)
return self.box
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

View File

@@ -0,0 +1,78 @@
import numpy as np
from xarm import Base
class Push(Base):
def __init__(self):
super().__init__("push")
def _reset_sim(self):
self._act_magnitude = 0
super()._reset_sim()
def is_success(self):
return np.linalg.norm(self.obj - self.goal) <= 0.05
def get_reward(self):
dist = np.linalg.norm(self.obj - self.goal)
penalty = self._act_magnitude**2
return -(dist + 0.15 * penalty)
def _get_obs(self):
eef_velp = self.sim.data.get_site_xvelp("grasp") * self.dt
gripper_angle = self.sim.data.get_joint_qpos("right_outer_knuckle_joint")
eef, goal = self.eef - self.center_of_table, self.goal - self.center_of_table
obj = self.obj - self.center_of_table
obj_rot = self.sim.data.get_joint_qpos("object_joint0")[-4:]
obj_velp = self.sim.data.get_site_xvelp("object_site") * self.dt
obj_velr = self.sim.data.get_site_xvelr("object_site") * self.dt
obs = np.concatenate(
[
eef,
eef_velp,
goal,
obj,
obj_rot,
obj_velp,
obj_velr,
eef - goal,
eef - obj,
obj - goal,
np.array(
[
np.linalg.norm(eef - goal),
np.linalg.norm(eef - obj),
np.linalg.norm(obj - goal),
gripper_angle,
]
),
],
axis=0,
)
return {"observation": obs, "state": eef, "achieved_goal": eef, "desired_goal": goal}
def _sample_goal(self):
# Gripper
gripper_pos = np.array([1.280, 0.295, 0.735]) + self.np_random.uniform(-0.05, 0.05, size=3)
super()._set_gripper(gripper_pos, self.gripper_rotation)
# Object
object_pos = self.center_of_table - np.array([0.25, 0, 0.07])
object_pos[0] += self.np_random.uniform(-0.08, 0.08, size=1)
object_pos[1] += self.np_random.uniform(-0.08, 0.08, size=1)
object_qpos = self.sim.data.get_joint_qpos("object_joint0")
object_qpos[:3] = object_pos
self.sim.data.set_joint_qpos("object_joint0", object_qpos)
# Goal
self.goal = np.array([1.600, 0.200, 0.545])
self.goal[:2] += self.np_random.uniform(-0.1, 0.1, size=2)
self.sim.model.site_pos[self.sim.model.site_name2id("target0")] = self.goal
return self.goal
def step(self, action):
self._act_magnitude = np.linalg.norm(action[:3])
return super().step(action)

Some files were not shown because too many files have changed in this diff Show More