{ "cells": [ { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "%load_ext autoreload\n", "%autoreload 2" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "from pathlib import Path\n", "from pprint import pprint\n", "\n", "from huggingface_hub import snapshot_download\n", "from hydra import compose, initialize\n", "from hydra.core.global_hydra import GlobalHydra\n", "from IPython.display import Video\n", "from omegaconf import OmegaConf\n", "from omegaconf.dictconfig import DictConfig\n", "\n", "from examples.notebook_utils import config_notebook\n", "from examples.pretrained_script import download_eval_pretrained\n", "from lerobot.scripts.eval import eval\n", "\n", "# Select policy and env\n", "POLICY = \"diffusion\" # \"tdmpc\" | \"diffusion\"\n", "ENV = \"pusht\" # \"pusht\" | \"simxarm\"\n", "\n", "# Select device\n", "DEVICE = \"mps\" # \"cuda\" | \"mps\"\n", "\n", "# Generated videos will be written here\n", "OUT_DIR = Path(\"./outputs\")\n", "OUT_EXAMPLE = OUT_DIR / \"eval\" / \"eval_episode_0.mp4\"\n", "\n", "PRETRAINED_REPO = \"lerobot/diffusion_policy_pusht_image\"\n", "pretrained_folder = Path(snapshot_download(repo_id=PRETRAINED_REPO, repo_type=\"model\", revision=\"v1.0\"))\n", "pretrained_model_path = pretrained_folder / \"model.pt\"\n", "\n", "cfg_path = pretrained_folder / \"config.yaml\"\n", "GlobalHydra.instance().clear()\n", "\n", "print(pretrained_folder)\n", "\n", "initialize(config_path=\"../../../.cache/huggingface/hub/models--lerobot--diffusion_policy_pusht_image/snapshots/163d168f5c193c356b82e3bf6bbf5b4eeaa780d7\")\n", "overrides = [\n", " f\"env={ENV}\",\n", " f\"policy={POLICY}\",\n", " f\"device={DEVICE}\",\n", " f\"+policy.pretrained_model_path={pretrained_model_path}\",\n", " f\"eval_episodes=1\",\n", " f\"+env.episode_length=200\",\n", "]\n", "cfg = compose(config_name=\"config\", overrides=overrides)\n", "pprint(OmegaConf.to_container(cfg))\n", "# Setup config\n", "#cfg = config_notebook(cfg_path, policy=POLICY, env=ENV, device=DEVICE, print_config=False, pretrained_model_path=pretrained_model_path)" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [ "# eval(cfg, out_dir=OUT_DIR)\n", "download_eval_pretrained(OUT_DIR, cfg)\n", "Video(OUT_EXAMPLE, embed=True)" ] } ], "metadata": { "kernelspec": { "display_name": "lerobot", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.10.14" } }, "nbformat": 4, "nbformat_minor": 2 }