forked from tangger/lerobot
764 lines
28 KiB
Python
764 lines
28 KiB
Python
"""
|
|
Utilities to control a robot in simulation.
|
|
|
|
Useful to record a dataset, replay a recorded episode and record an evaluation dataset.
|
|
|
|
Examples of usage:
|
|
|
|
|
|
- Unlimited teleoperation at a limited frequency of 30 Hz, to simulate data recording frequency.
|
|
You can modify this value depending on how fast your simulation can run:
|
|
```bash
|
|
python lerobot/scripts/control_robot.py teleoperate \
|
|
--fps 30 \
|
|
--robot-path lerobot/configs/robot/your_robot_config.yaml \
|
|
--sim-config lerobot/configs/env/your_sim_config.yaml
|
|
```
|
|
|
|
- Record one episode in order to test replay:
|
|
```bash
|
|
python lerobot/scripts/control_sim_robot.py record \
|
|
--robot-path lerobot/configs/robot/your_robot_config.yaml \
|
|
--sim-config lerobot/configs/env/your_sim_config.yaml \
|
|
--fps 30 \
|
|
--root tmp/data \
|
|
--repo-id $USER/robot_sim_test \
|
|
--num-episodes 1 \
|
|
--run-compute-stats 0
|
|
```
|
|
|
|
- Visualize dataset:
|
|
```bash
|
|
python lerobot/scripts/visualize_dataset.py \
|
|
--root tmp/data \
|
|
--repo-id $USER/robot_sim_test \
|
|
--episode-index 0
|
|
```
|
|
|
|
- Replay this test episode:
|
|
```bash
|
|
python lerobot/scripts/control_sim_robot.py replay \
|
|
--sim-config lerobot/configs/env/your_sim_config.yaml \
|
|
--fps 30 \
|
|
--root tmp/data \
|
|
--repo-id $USER/koch_test \
|
|
--episodes 0
|
|
```
|
|
|
|
- Record a full dataset in order to train a policy,
|
|
30 seconds of recording for each episode, and 10 seconds to reset the environment in between episodes:
|
|
```bash
|
|
python lerobot/scripts/control_sim_robot.py record \
|
|
--robot-path lerobot/configs/robot/your_robot_config.yaml \
|
|
--sim-config lerobot/configs/env/your_sim_config.yaml \
|
|
--fps 30 \
|
|
--root data \
|
|
--repo-id $USER/robot_sim_test \
|
|
--num-episodes 50 \
|
|
--episode-time-s 30 \
|
|
--reset-time-s 10
|
|
```
|
|
|
|
**NOTE**: You can use your keyboard to control data recording flow.
|
|
- Tap right arrow key '->' to early exit while recording an episode and go to resseting the environment.
|
|
- Tap right arrow key '->' to early exit while resetting the environment and got to recording the next episode.
|
|
- Tap left arrow key '<-' to early exit and re-record the current episode.
|
|
- Tap escape key 'esc' to stop the data recording.
|
|
This might require a sudo permission to allow your terminal to monitor keyboard events.
|
|
|
|
**NOTE**: You can resume/continue data recording by running the same data recording command twice.
|
|
To avoid resuming by deleting the dataset, use `--force-override 1`.
|
|
|
|
"""
|
|
|
|
import argparse
|
|
import concurrent.futures
|
|
import json
|
|
import logging
|
|
import multiprocessing.process
|
|
import os
|
|
import platform
|
|
import shutil
|
|
import time
|
|
import traceback
|
|
from functools import cache
|
|
from pathlib import Path
|
|
import gymnasium as gym
|
|
import multiprocessing
|
|
|
|
import cv2
|
|
import torch
|
|
import numpy as np
|
|
import tqdm
|
|
from PIL import Image
|
|
from datasets import Dataset, Features, Sequence, Value
|
|
|
|
# from safetensors.torch import load_file, save_file
|
|
from lerobot.common.datasets.compute_stats import compute_stats
|
|
from lerobot.common.datasets.lerobot_dataset import CODEBASE_VERSION, LeRobotDataset
|
|
from lerobot.common.datasets.video_utils import VideoFrame, encode_video_frames
|
|
from lerobot.common.datasets.push_dataset_to_hub.utils import concatenate_episodes, get_default_encoding
|
|
from lerobot.common.datasets.utils import calculate_episode_data_index, create_branch, hf_transform_to_torch
|
|
from lerobot.common.datasets.video_utils import encode_video_frames
|
|
from lerobot.common.robot_devices.robots.factory import make_robot
|
|
from lerobot.common.robot_devices.robots.utils import Robot
|
|
from lerobot.common.robot_devices.utils import busy_wait
|
|
from lerobot.common.envs.factory import make_env
|
|
from lerobot.common.utils.utils import init_hydra_config, init_logging
|
|
from lerobot.scripts.push_dataset_to_hub import (
|
|
push_dataset_card_to_hub,
|
|
push_meta_data_to_hub,
|
|
push_videos_to_hub,
|
|
save_meta_data,
|
|
)
|
|
|
|
########################################################################################
|
|
# Utilities
|
|
########################################################################################
|
|
def say(text, blocking=False):
|
|
# Check if mac, linux, or windows.
|
|
if platform.system() == "Darwin":
|
|
cmd = f'say "{text}"'
|
|
elif platform.system() == "Linux":
|
|
cmd = f'spd-say "{text}"'
|
|
elif platform.system() == "Windows":
|
|
cmd = (
|
|
'PowerShell -Command "Add-Type -AssemblyName System.Speech; '
|
|
f"(New-Object System.Speech.Synthesis.SpeechSynthesizer).Speak('{text}')\""
|
|
)
|
|
|
|
if not blocking and platform.system() in ["Darwin", "Linux"]:
|
|
# TODO(rcadene): Make it work for Windows
|
|
# Use the ampersand to run command in the background
|
|
cmd += " &"
|
|
|
|
os.system(cmd)
|
|
|
|
|
|
def save_image(img_arr, key, frame_index, episode_index, videos_dir):
|
|
img = Image.fromarray(img_arr)
|
|
path = videos_dir / f"{key}_episode_{episode_index:06d}" / f"frame_{frame_index:06d}.png"
|
|
path.parent.mkdir(parents=True, exist_ok=True)
|
|
img.save(str(path), quality=100)
|
|
|
|
def show_image_observations(observation_queue:multiprocessing.Queue):
|
|
keys = None
|
|
while True:
|
|
observations = observation_queue.get()
|
|
images = []
|
|
if keys is None: keys = [k for k in observations if 'image' in k]
|
|
for key in keys:
|
|
images.append(observations[key].squeeze(0))
|
|
cat_image = np.concatenate(images, 1)
|
|
cv2.imshow('observations', cv2.cvtColor(cat_image, cv2.COLOR_RGB2BGR))
|
|
cv2.waitKey(1)
|
|
|
|
|
|
def none_or_int(value):
|
|
if value == "None":
|
|
return None
|
|
return int(value)
|
|
|
|
|
|
@cache
|
|
def is_headless():
|
|
"""Detects if python is running without a monitor."""
|
|
try:
|
|
import pynput # noqa
|
|
|
|
return False
|
|
except Exception:
|
|
print(
|
|
"Error trying to import pynput. Switching to headless mode. "
|
|
"As a result, the video stream from the cameras won't be shown, "
|
|
"and you won't be able to change the control flow with keyboards. "
|
|
"For more info, see traceback below.\n"
|
|
)
|
|
traceback.print_exc()
|
|
print()
|
|
return True
|
|
|
|
def init_read_leader(robot, fps, **kwargs):
|
|
axis_directions = kwargs.get('axis_directions', [1])
|
|
offsets = kwargs.get('offsets', [0])
|
|
command_queue = multiprocessing.Queue(1000)
|
|
read_leader = multiprocessing.Process(target=read_commands_from_leader, args=(robot, command_queue, fps, axis_directions, offsets))
|
|
return read_leader, command_queue
|
|
|
|
def read_commands_from_leader(robot: Robot, queue: multiprocessing.Queue, fps: int, axis_directions: list, offsets: list, stop_flag=None):
|
|
if not robot.is_connected:
|
|
robot.connect()
|
|
|
|
# Constants necessary for transforming the joint pos of the real robot to the sim
|
|
# depending on the robot discription used in that sim.
|
|
start_pos = np.array(robot.leader_arms.main.calibration['start_pos'])
|
|
axis_directions = np.array(axis_directions)
|
|
offsets = np.array(offsets) * np.pi
|
|
counts_to_radians = 2.0 * np.pi / 4096
|
|
|
|
if stop_flag is None:
|
|
stop_flag = multiprocessing.Value('b', False)
|
|
|
|
#TODO(michel_aractingi): temp fix to disable calibration while reading from the leader arms
|
|
# different calculation for joint commands would be needed
|
|
robot.leader_arms.main.calibration = None
|
|
while True:
|
|
#with stop_flag.get_lock():
|
|
# stop_flag_value = stop_flag.value
|
|
|
|
start_loop_t = time.perf_counter()
|
|
#if not stop_flag_value:
|
|
real_positions = np.array(robot.leader_arms.main.read('Present_Position'))
|
|
joint_commands = axis_directions * (real_positions - start_pos) * counts_to_radians + offsets
|
|
queue.put(joint_commands)
|
|
if fps is not None:
|
|
dt_s = time.perf_counter() - start_loop_t
|
|
busy_wait(1 / fps - dt_s)
|
|
#else:
|
|
#queue.get() #TODO (michel_aractingi): remove elements from queue in case get_lock is delayed
|
|
#print('here!!!')
|
|
#busy_wait(0.01)
|
|
|
|
def create_rl_hf_dataset(data_dict):
|
|
features = {}
|
|
|
|
keys = [key for key in data_dict if "observation.images." in key]
|
|
for key in keys:
|
|
features[key] = VideoFrame()
|
|
|
|
features["observation.state"] = Sequence(
|
|
length=data_dict["observation.state"].shape[1], feature=Value(dtype="float32", id=None)
|
|
)
|
|
if "observation.velocity" in data_dict:
|
|
features["observation.velocity"] = Sequence(
|
|
length=data_dict["observation.velocity"].shape[1], feature=Value(dtype="float32", id=None)
|
|
)
|
|
if "observation.effort" in data_dict:
|
|
features["observation.effort"] = Sequence(
|
|
length=data_dict["observation.effort"].shape[1], feature=Value(dtype="float32", id=None)
|
|
)
|
|
features["action"] = Sequence(
|
|
length=data_dict["action"].shape[1], feature=Value(dtype="float32", id=None)
|
|
)
|
|
features["reward"] = Value(dtype="float32", id=None)
|
|
|
|
features["seed"] = Value(dtype="int64", id=None)
|
|
features["episode_index"] = Value(dtype="int64", id=None)
|
|
features["frame_index"] = Value(dtype="int64", id=None)
|
|
features["timestamp"] = Value(dtype="float32", id=None)
|
|
features["next.done"] = Value(dtype="bool", id=None)
|
|
features["index"] = Value(dtype="int64", id=None)
|
|
hf_dataset = Dataset.from_dict(data_dict, features=Features(features))
|
|
hf_dataset.set_transform(hf_transform_to_torch)
|
|
return hf_dataset
|
|
|
|
|
|
########################################################################################
|
|
# Control modes
|
|
########################################################################################
|
|
|
|
|
|
def teleoperate(env, robot: Robot, teleop_time_s=None, **kwargs):
|
|
env = env()
|
|
env.reset()
|
|
|
|
read_leader, command_queue = init_read_leader(robot, **kwargs)
|
|
start_teleop_t = time.perf_counter()
|
|
read_leader.start()
|
|
while True:
|
|
action = command_queue.get()
|
|
env.step(np.expand_dims(action, 0))
|
|
if teleop_time_s is not None and time.perf_counter() - start_teleop_t > teleop_time_s:
|
|
read_leader.terminate()
|
|
command_queue.close()
|
|
print("Teleoperation processes finished.")
|
|
break
|
|
|
|
def record(
|
|
env,
|
|
robot: Robot,
|
|
fps: int | None = None,
|
|
root="data",
|
|
repo_id="lerobot/debug",
|
|
episode_time_s=30,
|
|
num_episodes=50,
|
|
video=True,
|
|
run_compute_stats=True,
|
|
push_to_hub=True,
|
|
tags=None,
|
|
num_image_writers_per_camera=4,
|
|
force_override=False,
|
|
visualize_images=0,
|
|
**kwargs
|
|
):
|
|
|
|
local_dir = Path(root) / repo_id
|
|
if local_dir.exists() and force_override:
|
|
shutil.rmtree(local_dir)
|
|
|
|
episodes_dir = local_dir / "episodes"
|
|
episodes_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
videos_dir = local_dir / "videos"
|
|
videos_dir.mkdir(parents=True, exist_ok=True)
|
|
|
|
# Logic to resume data recording
|
|
rec_info_path = episodes_dir / "data_recording_info.json"
|
|
if rec_info_path.exists():
|
|
with open(rec_info_path) as f:
|
|
rec_info = json.load(f)
|
|
episode_index = rec_info["last_episode_index"] + 1
|
|
else:
|
|
episode_index = 0
|
|
|
|
if is_headless():
|
|
logging.warning(
|
|
"Headless environment detected. On-screen cameras display and keyboard inputs will not be available."
|
|
)
|
|
|
|
# Allow to exit early while recording an episode or resetting the environment,
|
|
# by tapping the right arrow key '->'. This might require a sudo permission
|
|
# to allow your terminal to monitor keyboard events.
|
|
exit_early = False
|
|
rerecord_episode = False
|
|
stop_recording = False
|
|
# Only import pynput if not in a headless environment
|
|
if not is_headless():
|
|
from pynput import keyboard
|
|
|
|
def on_press(key):
|
|
nonlocal exit_early, rerecord_episode, stop_recording
|
|
try:
|
|
if key == keyboard.Key.right:
|
|
print("Right arrow key pressed. Exiting loop...")
|
|
exit_early = True
|
|
elif key == keyboard.Key.left:
|
|
print("Left arrow key pressed. Exiting loop and rerecord the last episode...")
|
|
rerecord_episode = True
|
|
exit_early = True
|
|
elif key == keyboard.Key.esc:
|
|
print("Escape key pressed. Stopping data recording...")
|
|
stop_recording = True
|
|
exit_early = True
|
|
except Exception as e:
|
|
print(f"Error handling key press: {e}")
|
|
|
|
listener = keyboard.Listener(on_press=on_press)
|
|
listener.start()
|
|
|
|
# create env
|
|
env = env()
|
|
|
|
# Save images using threads to reach high fps (30 and more)
|
|
# Using `with` to exist smoothly if an execption is raised.
|
|
futures = []
|
|
num_image_writers = num_image_writers_per_camera * 2 ###############
|
|
num_image_writers = max(num_image_writers, 1)
|
|
|
|
read_leader, command_queue = init_read_leader(robot, fps, **kwargs)
|
|
if not is_headless() and visualize_images:
|
|
observations_queue = multiprocessing.Queue(1000)
|
|
show_images = multiprocessing.Process(target=show_image_observations, args=(observations_queue, ))
|
|
show_images.start()
|
|
|
|
state_keys_dict = env_cfg.state_keys
|
|
image_keys = env_cfg.image_keys
|
|
with concurrent.futures.ThreadPoolExecutor(max_workers=num_image_writers) as executor:
|
|
# Start recording all episodes
|
|
# start reading from leader, disable stop flag in leader process
|
|
while episode_index < num_episodes:
|
|
logging.info(f"Recording episode {episode_index}")
|
|
say(f"Recording episode {episode_index}")
|
|
ep_dict = {'action':[], 'reward':[]}
|
|
for k in state_keys_dict:
|
|
ep_dict[k] = []
|
|
frame_index = 0
|
|
timestamp = 0
|
|
start_episode_t = time.perf_counter()
|
|
|
|
# save seed so we can restore the environment state when we want to replay the trajectories
|
|
seed = np.random.randint(0,1e5)
|
|
observation, info = env.reset(seed=seed)
|
|
#with stop_reading_leader.get_lock():
|
|
#stop_reading_leader.Value = 0
|
|
read_leader.start()
|
|
while timestamp < episode_time_s:
|
|
action = command_queue.get()
|
|
for key in image_keys:
|
|
str_key = key if key.startswith('observation.images.') else 'observation.images.' + key
|
|
futures += [
|
|
executor.submit(
|
|
save_image, observation[key].squeeze(0), str_key, frame_index, episode_index, videos_dir)
|
|
]
|
|
|
|
if not is_headless() and visualize_images:
|
|
observations_queue.put(observation)
|
|
|
|
for key, obs_key in state_keys_dict.items():
|
|
ep_dict[key].append(torch.from_numpy(observation[obs_key]))
|
|
|
|
# Advance the sim environment
|
|
if len(action.shape) == 1:
|
|
action = np.expand_dims(action, 0)
|
|
observation, reward, _, _ , info = env.step(action)
|
|
ep_dict['action'].append(torch.from_numpy(action))
|
|
ep_dict['reward'].append(torch.tensor(reward))
|
|
print(reward)
|
|
|
|
frame_index += 1
|
|
|
|
timestamp = time.perf_counter() - start_episode_t
|
|
if exit_early:
|
|
exit_early = False
|
|
break
|
|
|
|
# enable stop reading leader flag
|
|
#with stop_reading_leader.get_lock():
|
|
#stop_reading_leader.Value = 1
|
|
# TODO (michel_aractinig): temp fix until I figure out the problem with shared memory
|
|
# stop_reading_leader is blocking
|
|
command_queue.close()
|
|
read_leader.terminate()
|
|
read_leader, command_queue = init_read_leader(robot, fps, **kwargs)
|
|
|
|
timestamp = 0
|
|
|
|
# During env reset we save the data and encode the videos
|
|
num_frames = frame_index
|
|
|
|
for key in image_keys:
|
|
if not key.startswith('observation.images.'):
|
|
key = 'observation.images.' + key
|
|
|
|
if video:
|
|
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
|
|
fname = f"{key}_episode_{episode_index:06d}.mp4"
|
|
video_path = local_dir / "videos" / fname
|
|
if video_path.exists():
|
|
video_path.unlink()
|
|
# Store the reference to the video frame, even tho the videos are not yet encoded
|
|
ep_dict[key] = []
|
|
for i in range(num_frames):
|
|
ep_dict[key].append({"path": f"videos/{fname}", "timestamp": i / fps})
|
|
|
|
else:
|
|
imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
|
|
ep_dict[key] = []
|
|
for i in range(num_frames):
|
|
img_path = imgs_dir / f"frame_{i:06d}.png"
|
|
ep_dict[key].append({"path": str(img_path)})
|
|
|
|
for key in state_keys_dict:
|
|
ep_dict[key] = torch.vstack(ep_dict[key]) * 180.0 / np.pi
|
|
ep_dict['action'] = torch.vstack(ep_dict['action']) * 180.0 / np.pi
|
|
ep_dict['reward'] = torch.stack(ep_dict['reward'])
|
|
|
|
ep_dict["seed"] = torch.tensor([seed] * num_frames)
|
|
ep_dict["episode_index"] = torch.tensor([episode_index] * num_frames)
|
|
ep_dict["frame_index"] = torch.arange(0, num_frames, 1)
|
|
ep_dict["timestamp"] = torch.arange(0, num_frames, 1) / fps
|
|
|
|
done = torch.zeros(num_frames, dtype=torch.bool)
|
|
done[-1] = True
|
|
ep_dict["next.done"] = done
|
|
|
|
ep_path = episodes_dir / f"episode_{episode_index}.pth"
|
|
print("Saving episode dictionary...")
|
|
torch.save(ep_dict, ep_path)
|
|
|
|
rec_info = {
|
|
"last_episode_index": episode_index,
|
|
}
|
|
with open(rec_info_path, "w") as f:
|
|
json.dump(rec_info, f)
|
|
|
|
is_last_episode = stop_recording or (episode_index == (num_episodes - 1))
|
|
|
|
# Skip updating episode index which forces re-recording episode
|
|
if rerecord_episode:
|
|
rerecord_episode = False
|
|
continue
|
|
|
|
episode_index += 1
|
|
|
|
if is_last_episode:
|
|
logging.info("Done recording")
|
|
say("Done recording", blocking=True)
|
|
|
|
logging.info("Waiting for threads writing the images on disk to terminate...")
|
|
for _ in tqdm.tqdm(
|
|
concurrent.futures.as_completed(futures), total=len(futures), desc="Writting images"
|
|
):
|
|
pass
|
|
if not is_headless() and visualize_images:
|
|
show_images.terminate()
|
|
observations_queue.close()
|
|
break
|
|
else:
|
|
print('Waiting for two seconds before starting the next recording session.....')
|
|
busy_wait(2)
|
|
|
|
|
|
num_episodes = episode_index
|
|
|
|
if video:
|
|
logging.info("Encoding videos")
|
|
say("Encoding videos")
|
|
# Use ffmpeg to convert frames stored as png into mp4 videos
|
|
for episode_index in tqdm.tqdm(range(num_episodes)):
|
|
for key in image_keys:
|
|
if not key.startswith('observation.images.'):
|
|
key = 'observation.images.' + key
|
|
|
|
tmp_imgs_dir = videos_dir / f"{key}_episode_{episode_index:06d}"
|
|
fname = f"{key}_episode_{episode_index:06d}.mp4"
|
|
video_path = local_dir / "videos" / fname
|
|
if video_path.exists():
|
|
# Skip if video is already encoded. Could be the case when resuming data recording.
|
|
continue
|
|
# note: `encode_video_frames` is a blocking call. Making it asynchronous shouldn't speedup encoding,
|
|
# since video encoding with ffmpeg is already using multithreading.
|
|
encode_video_frames(tmp_imgs_dir, video_path, fps, overwrite=True)
|
|
shutil.rmtree(tmp_imgs_dir)
|
|
|
|
logging.info("Concatenating episodes")
|
|
ep_dicts = []
|
|
for episode_index in tqdm.tqdm(range(num_episodes)):
|
|
ep_path = episodes_dir / f"episode_{episode_index}.pth"
|
|
ep_dict = torch.load(ep_path)
|
|
ep_dicts.append(ep_dict)
|
|
data_dict = concatenate_episodes(ep_dicts)
|
|
|
|
total_frames = data_dict["frame_index"].shape[0]
|
|
data_dict["index"] = torch.arange(0, total_frames, 1)
|
|
|
|
hf_dataset = create_rl_hf_dataset(data_dict)
|
|
episode_data_index = calculate_episode_data_index(hf_dataset)
|
|
info = {
|
|
"codebase_version": CODEBASE_VERSION,
|
|
"fps": fps,
|
|
"video": video,
|
|
}
|
|
if video:
|
|
info["encoding"] = get_default_encoding()
|
|
|
|
lerobot_dataset = LeRobotDataset.from_preloaded(
|
|
repo_id=repo_id,
|
|
hf_dataset=hf_dataset,
|
|
episode_data_index=episode_data_index,
|
|
info=info,
|
|
videos_dir=videos_dir,
|
|
)
|
|
if run_compute_stats:
|
|
logging.info("Computing dataset statistics")
|
|
say("Computing dataset statistics")
|
|
stats = compute_stats(lerobot_dataset)
|
|
lerobot_dataset.stats = stats
|
|
else:
|
|
stats = {}
|
|
logging.info("Skipping computation of the dataset statistics")
|
|
|
|
hf_dataset = hf_dataset.with_format(None) # to remove transforms that cant be saved
|
|
hf_dataset.save_to_disk(str(local_dir / "train"))
|
|
|
|
meta_data_dir = local_dir / "meta_data"
|
|
save_meta_data(info, stats, episode_data_index, meta_data_dir)
|
|
|
|
if push_to_hub:
|
|
hf_dataset.push_to_hub(repo_id, revision="main")
|
|
push_meta_data_to_hub(repo_id, meta_data_dir, revision="main")
|
|
push_dataset_card_to_hub(repo_id, revision="main", tags=tags)
|
|
if video:
|
|
push_videos_to_hub(repo_id, videos_dir, revision="main")
|
|
create_branch(repo_id, repo_type="dataset", branch=CODEBASE_VERSION)
|
|
|
|
logging.info("Exiting")
|
|
say("Exiting")
|
|
return lerobot_dataset
|
|
|
|
|
|
def replay(env, episodes: list, fps: int | None = None, root="data", repo_id="lerobot/debug"):
|
|
|
|
env = env()
|
|
local_dir = Path(root) / repo_id
|
|
if not local_dir.exists():
|
|
raise ValueError(local_dir)
|
|
|
|
dataset = LeRobotDataset(repo_id, root=root)
|
|
items = dataset.hf_dataset.select_columns("action")
|
|
seeds = dataset.hf_dataset.select_columns("seed")['seed']
|
|
for episode in episodes:
|
|
from_idx = dataset.episode_data_index["from"][episode].item()
|
|
to_idx = dataset.episode_data_index["to"][episode].item()
|
|
env.reset(seed=seeds[from_idx].item())
|
|
|
|
logging.info("Replaying episode")
|
|
say("Replaying episode", blocking=True)
|
|
for idx in range(from_idx, to_idx):
|
|
start_episode_t = time.perf_counter()
|
|
|
|
action = items[idx]["action"]
|
|
|
|
env.step(action.unsqueeze(0).numpy() * np.pi / 180.0)
|
|
|
|
dt_s = time.perf_counter() - start_episode_t
|
|
busy_wait(1 / fps - dt_s)
|
|
|
|
# wait before playing next episode
|
|
busy_wait(5)
|
|
|
|
|
|
|
|
if __name__ == "__main__":
|
|
parser = argparse.ArgumentParser()
|
|
subparsers = parser.add_subparsers(dest="mode", required=True)
|
|
|
|
# Set common options for all the subparsers
|
|
base_parser = argparse.ArgumentParser(add_help=False)
|
|
base_parser.add_argument(
|
|
"--robot-path",
|
|
type=str,
|
|
default="lerobot/configs/robot/koch.yaml",
|
|
help="Path to robot yaml file used to instantiate the robot using `make_robot` factory function.",
|
|
)
|
|
|
|
base_parser.add_argument(
|
|
"--sim-config",
|
|
help="Path to a yaml config you want to use for initializing a sim environment based on gym ",
|
|
)
|
|
|
|
parser_teleop = subparsers.add_parser("teleoperate", parents=[base_parser])
|
|
parser_teleop.add_argument(
|
|
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
|
)
|
|
|
|
parser_record = subparsers.add_parser("record", parents=[base_parser])
|
|
parser_record.add_argument(
|
|
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
|
)
|
|
parser_record.add_argument(
|
|
"--root",
|
|
type=Path,
|
|
default="data",
|
|
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
|
|
)
|
|
parser_record.add_argument(
|
|
"--repo-id",
|
|
type=str,
|
|
default="lerobot/test",
|
|
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
|
|
)
|
|
parser_record.add_argument(
|
|
"--episode-time-s",
|
|
type=int,
|
|
default=60,
|
|
help="Number of seconds for data recording for each episode.",
|
|
)
|
|
parser_record.add_argument(
|
|
"--reset-time-s",
|
|
type=int,
|
|
default=60,
|
|
help="Number of seconds for resetting the environment after each episode.",
|
|
)
|
|
parser_record.add_argument("--num-episodes", type=int, default=50, help="Number of episodes to record.")
|
|
parser_record.add_argument(
|
|
"--run-compute-stats",
|
|
type=int,
|
|
default=1,
|
|
help="By default, run the computation of the data statistics at the end of data collection. Compute intensive and not required to just replay an episode.",
|
|
)
|
|
parser_record.add_argument(
|
|
"--push-to-hub",
|
|
type=int,
|
|
default=1,
|
|
help="Upload dataset to Hugging Face hub.",
|
|
)
|
|
parser_record.add_argument(
|
|
"--tags",
|
|
type=str,
|
|
nargs="*",
|
|
help="Add tags to your dataset on the hub.",
|
|
)
|
|
parser_record.add_argument(
|
|
"--num-image-writers-per-camera",
|
|
type=int,
|
|
default=4,
|
|
help=(
|
|
"Number of threads writing the frames as png images on disk, per camera. "
|
|
"Too much threads might cause unstable teleoperation fps due to main thread being blocked. "
|
|
"Not enough threads might cause low camera fps."
|
|
),
|
|
)
|
|
parser_record.add_argument(
|
|
"--force-override",
|
|
type=int,
|
|
default=0,
|
|
help="By default, data recording is resumed. When set to 1, delete the local directory and start data recording from scratch.",
|
|
)
|
|
parser_record.add_argument(
|
|
"--visualize-images",
|
|
type=int,
|
|
default=0,
|
|
help="Visualize image observations with opencv.",
|
|
)
|
|
|
|
parser_replay = subparsers.add_parser("replay", parents=[base_parser])
|
|
parser_replay.add_argument(
|
|
"--fps", type=none_or_int, default=None, help="Frames per second (set to None to disable)"
|
|
)
|
|
parser_replay.add_argument(
|
|
"--root",
|
|
type=Path,
|
|
default="data",
|
|
help="Root directory where the dataset will be stored locally at '{root}/{repo_id}' (e.g. 'data/hf_username/dataset_name').",
|
|
)
|
|
parser_replay.add_argument(
|
|
"--repo-id",
|
|
type=str,
|
|
default="lerobot/test",
|
|
help="Dataset identifier. By convention it should match '{hf_username}/{dataset_name}' (e.g. `lerobot/test`).",
|
|
)
|
|
parser_replay.add_argument("--episodes", nargs='+', type=int, default=[0], help="Indices of the episodes to replay.")
|
|
|
|
args = parser.parse_args()
|
|
|
|
init_logging()
|
|
|
|
control_mode = args.mode
|
|
robot_path = args.robot_path
|
|
env_config_path = args.sim_config
|
|
kwargs = vars(args)
|
|
del kwargs["mode"]
|
|
del kwargs["robot_path"]
|
|
del kwargs["sim_config"]
|
|
|
|
# make gym env
|
|
env_cfg = init_hydra_config(env_config_path)
|
|
env_fn = lambda: make_env(env_cfg, n_envs=1)
|
|
|
|
robot = None
|
|
if control_mode != 'replay':
|
|
# make robot
|
|
robot_overrides = ['~cameras', '~follower_arms']
|
|
robot_cfg = init_hydra_config(robot_path, robot_overrides)
|
|
robot = make_robot(robot_cfg)
|
|
|
|
kwargs.update(env_cfg.calibration)
|
|
|
|
if control_mode == "teleoperate":
|
|
teleoperate(env_fn, robot, **kwargs)
|
|
|
|
elif control_mode == "record":
|
|
record(env_fn, robot, **kwargs)
|
|
|
|
elif control_mode == "replay":
|
|
replay(env_fn, **kwargs)
|
|
|
|
else:
|
|
raise ValueError(f"Invalid control mode: '{control_mode}', only valid modes are teleoperate, record and replay." )
|
|
|
|
if robot and robot.is_connected:
|
|
# Disconnect manually to avoid a "Core dump" during process
|
|
# termination due to camera threads not properly exiting.
|
|
robot.disconnect()
|