Files
lerobot/tests/test_envs.py
Alexander Soare 1a1308d62f fix environment seeding
add fixes for reproducibility

only try to start env if it is closed

revision

fix normalization and data type

Improve README

Improve README

Tests are passing, Eval pretrained model works, Add gif

Update gif

Update gif

Update gif

Update gif

Update README

Update README

update minor

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Update README.md

Co-authored-by: Simon Alibert <75076266+aliberts@users.noreply.github.com>

Address suggestions

Update thumbnail + stats

Update thumbnail + stats

Update README.md

Co-authored-by: Alexander Soare <alexander.soare159@gmail.com>

Add more comments

Add test_examples.py
2024-03-26 10:10:43 +00:00

109 lines
2.9 KiB
Python

import pytest
from tensordict import TensorDict
import torch
from torchrl.envs.utils import check_env_specs, step_mdp
from lerobot.common.datasets.factory import make_offline_buffer
from lerobot.common.envs.factory import make_env
from lerobot.common.envs.pusht.env import PushtEnv
from lerobot.common.envs.simxarm.env import SimxarmEnv
from .utils import DEVICE, init_config
def print_spec_rollout(env):
print("observation_spec:", env.observation_spec)
print("action_spec:", env.action_spec)
print("reward_spec:", env.reward_spec)
print("done_spec:", env.done_spec)
td = env.reset()
print("reset tensordict", td)
td = env.rand_step(td)
print("random step tensordict", td)
def simple_rollout(steps=100):
# preallocate:
data = TensorDict({}, [steps])
# reset
_data = env.reset()
for i in range(steps):
_data["action"] = env.action_spec.rand()
_data = env.step(_data)
data[i] = _data
_data = step_mdp(_data, keep_other=True)
return data
print("data from rollout:", simple_rollout(100))
@pytest.mark.parametrize(
"task,from_pixels,pixels_only",
[
("lift", False, False),
("lift", True, False),
("lift", True, True),
# TODO(aliberts): Add simxarm other tasks
# ("reach", False, False),
# ("reach", True, False),
# ("push", False, False),
# ("push", True, False),
# ("peg_in_box", False, False),
# ("peg_in_box", True, False),
],
)
def test_simxarm(task, from_pixels, pixels_only):
env = SimxarmEnv(
task,
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=84 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
@pytest.mark.parametrize(
"from_pixels,pixels_only",
[
(True, False),
],
)
def test_pusht(from_pixels, pixels_only):
env = PushtEnv(
from_pixels=from_pixels,
pixels_only=pixels_only,
image_size=96 if from_pixels else None,
)
# print_spec_rollout(env)
check_env_specs(env)
@pytest.mark.parametrize(
"env_name",
[
"simxarm",
"pusht",
"aloha",
],
)
def test_factory(env_name):
cfg = init_config(overrides=[f"env={env_name}", f"device={DEVICE}"])
offline_buffer = make_offline_buffer(cfg)
env = make_env(cfg)
for key in offline_buffer.image_keys:
assert env.reset().get(key).dtype == torch.uint8
check_env_specs(env)
env = make_env(cfg, transform=offline_buffer.transform)
for key in offline_buffer.image_keys:
img = env.reset().get(key)
assert img.dtype == torch.float32
# TODO(rcadene): we assume for now that image normalization takes place in the model
assert img.max() <= 1.0
assert img.min() >= 0.0
check_env_specs(env)