forked from tangger/lerobot
164 lines
5.1 KiB
Python
164 lines
5.1 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any
|
|
|
|
from lerobot.common.utils.utils import format_big_number
|
|
|
|
|
|
class AverageMeter:
|
|
"""
|
|
Computes and stores the average and current value
|
|
Adapted from https://github.com/pytorch/examples/blob/main/imagenet/main.py
|
|
"""
|
|
|
|
def __init__(self, name: str, fmt: str = ":f"):
|
|
self.name = name
|
|
self.fmt = fmt
|
|
self.reset()
|
|
|
|
def reset(self) -> None:
|
|
self.val = 0.0
|
|
self.avg = 0.0
|
|
self.sum = 0.0
|
|
self.count = 0.0
|
|
|
|
def update(self, val: float, n: int = 1) -> None:
|
|
self.val = val
|
|
self.sum += val * n
|
|
self.count += n
|
|
self.avg = self.sum / self.count
|
|
|
|
def __str__(self):
|
|
fmtstr = "{name}:{avg" + self.fmt + "}"
|
|
return fmtstr.format(**self.__dict__)
|
|
|
|
|
|
class MetricsTracker:
|
|
"""
|
|
A helper class to track and log metrics over time.
|
|
|
|
Usage pattern:
|
|
|
|
```python
|
|
# initialize, potentially with non-zero initial step (e.g. if resuming run)
|
|
metrics = {"loss": AverageMeter("loss", ":.3f")}
|
|
train_metrics = MetricsTracker(cfg, dataset, metrics, initial_step=step)
|
|
|
|
# update metrics derived from step (samples, episodes, epochs) at each training step
|
|
train_metrics.step()
|
|
|
|
# update various metrics
|
|
loss = policy.forward(batch)
|
|
train_metrics.loss = loss
|
|
|
|
# display current metrics
|
|
logging.info(train_metrics)
|
|
|
|
# export for wandb
|
|
wandb.log(train_metrics.to_dict())
|
|
|
|
# reset averages after logging
|
|
train_metrics.reset_averages()
|
|
```
|
|
"""
|
|
|
|
__keys__ = [
|
|
"_batch_size",
|
|
"_num_frames",
|
|
"_avg_samples_per_ep",
|
|
"metrics",
|
|
"steps",
|
|
"samples",
|
|
"episodes",
|
|
"epochs",
|
|
]
|
|
|
|
def __init__(
|
|
self,
|
|
batch_size: int,
|
|
num_frames: int,
|
|
num_episodes: int,
|
|
metrics: dict[str, AverageMeter],
|
|
initial_step: int = 0,
|
|
):
|
|
self.__dict__.update({k: None for k in self.__keys__})
|
|
self._batch_size = batch_size
|
|
self._num_frames = num_frames
|
|
self._avg_samples_per_ep = num_frames / num_episodes
|
|
self.metrics = metrics
|
|
|
|
self.steps = initial_step
|
|
# A sample is an (observation,action) pair, where observation and action
|
|
# can be on multiple timestamps. In a batch, we have `batch_size` number of samples.
|
|
self.samples = self.steps * self._batch_size
|
|
self.episodes = self.samples / self._avg_samples_per_ep
|
|
self.epochs = self.samples / self._num_frames
|
|
|
|
def __getattr__(self, name: str) -> int | dict[str, AverageMeter] | AverageMeter | Any:
|
|
if name in self.__dict__:
|
|
return self.__dict__[name]
|
|
elif name in self.metrics:
|
|
return self.metrics[name]
|
|
else:
|
|
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
|
|
|
|
def __setattr__(self, name: str, value: Any) -> None:
|
|
if name in self.__dict__:
|
|
super().__setattr__(name, value)
|
|
elif name in self.metrics:
|
|
self.metrics[name].update(value)
|
|
else:
|
|
raise AttributeError(f"'{self.__class__.__name__}' object has no attribute '{name}'")
|
|
|
|
def step(self) -> None:
|
|
"""
|
|
Updates metrics that depend on 'step' for one step.
|
|
"""
|
|
self.steps += 1
|
|
self.samples += self._batch_size
|
|
self.episodes = self.samples / self._avg_samples_per_ep
|
|
self.epochs = self.samples / self._num_frames
|
|
|
|
def __str__(self) -> str:
|
|
display_list = [
|
|
f"step:{format_big_number(self.steps)}",
|
|
# number of samples seen during training
|
|
f"smpl:{format_big_number(self.samples)}",
|
|
# number of episodes seen during training
|
|
f"ep:{format_big_number(self.episodes)}",
|
|
# number of time all unique samples are seen
|
|
f"epch:{self.epochs:.2f}",
|
|
*[str(m) for m in self.metrics.values()],
|
|
]
|
|
return " ".join(display_list)
|
|
|
|
def to_dict(self, use_avg: bool = True) -> dict[str, int | float]:
|
|
"""
|
|
Returns the current metric values (or averages if `use_avg=True`) as a dict.
|
|
"""
|
|
return {
|
|
"steps": self.steps,
|
|
"samples": self.samples,
|
|
"episodes": self.episodes,
|
|
"epochs": self.epochs,
|
|
**{k: m.avg if use_avg else m.val for k, m in self.metrics.items()},
|
|
}
|
|
|
|
def reset_averages(self) -> None:
|
|
"""Resets average meters."""
|
|
for m in self.metrics.values():
|
|
m.reset()
|