Files
lerobot/sbatch.sh
Remi Cadene 9d002032d1 Add Aloha env and ACT policy
WIP Aloha env tests pass

Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1])

Update README

Copy past from act repo

Remove download.py add a WIP for Simxarm

Remove download.py add a WIP for Simxarm

Add act yaml (TODO: try train.py)

Training can runs (TODO: eval)

Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model)

Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm)

poetry lock

fix bug in compute_stats for action normalization

fix more bugs in normalization

fix training

fix import

PushtEnv inheriates AbstractEnv, Improve factory Normalization

Add _make_env to EnvAbstract

Add call_rendering_hooks to pusht env

SimxarmEnv inherites from AbstractEnv (NOT TESTED)

Add aloha tests artifacts + update pusht stats

fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255]

Small fix on simxarm

Add next to obs

Add top camera to Aloha env (TODO: make it compatible with set of cameras)

Add top camera to Aloha env (TODO: make it compatible with set of cameras)
2024-03-12 10:27:48 +00:00

24 lines
737 B
Bash

#!/bin/bash
#SBATCH --nodes=1 # total number of nodes (N to be defined)
#SBATCH --ntasks-per-node=1 # number of tasks per node (here 8 tasks, or 1 task per GPU)
#SBATCH --gres=gpu:1 # number of GPUs reserved per node (here 8, or all the GPUs)
#SBATCH --cpus-per-task=8 # number of cores per task (8x8 = 64 cores, or all the cores)
#SBATCH --time=2-00:00:00
#SBATCH --output=/home/rcadene/slurm/%j.out
#SBATCH --error=/home/rcadene/slurm/%j.err
#SBATCH --qos=medium
#SBATCH --mail-user=re.cadene@gmail.com
#SBATCH --mail-type=ALL
CMD=$@
echo "command: $CMD"
apptainer exec --nv \
~/apptainer/nvidia_cuda:12.2.2-devel-ubuntu22.04.sif $SHELL
source ~/.bashrc
#conda activate fowm
conda activate lerobot
srun $CMD