forked from tangger/lerobot
WIP Aloha env tests pass Rendering works (fps look fast tho? TODO action bounding is too wide [-1,1]) Update README Copy past from act repo Remove download.py add a WIP for Simxarm Remove download.py add a WIP for Simxarm Add act yaml (TODO: try train.py) Training can runs (TODO: eval) Add tasks without end_effector that are compatible with dataset, Eval can run (TODO: training and pretrained model) Add AbstractEnv, Refactor AlohaEnv, Add rendering_hook in env, Minor modifications, (TODO: Refactor Pusht and Simxarm) poetry lock fix bug in compute_stats for action normalization fix more bugs in normalization fix training fix import PushtEnv inheriates AbstractEnv, Improve factory Normalization Add _make_env to EnvAbstract Add call_rendering_hooks to pusht env SimxarmEnv inherites from AbstractEnv (NOT TESTED) Add aloha tests artifacts + update pusht stats fix image normalization: before env was in [0,1] but dataset in [0,255], and now both in [0,255] Small fix on simxarm Add next to obs Add top camera to Aloha env (TODO: make it compatible with set of cameras) Add top camera to Aloha env (TODO: make it compatible with set of cameras)
24 lines
737 B
Bash
24 lines
737 B
Bash
#!/bin/bash
|
|
#SBATCH --nodes=1 # total number of nodes (N to be defined)
|
|
#SBATCH --ntasks-per-node=1 # number of tasks per node (here 8 tasks, or 1 task per GPU)
|
|
#SBATCH --gres=gpu:1 # number of GPUs reserved per node (here 8, or all the GPUs)
|
|
#SBATCH --cpus-per-task=8 # number of cores per task (8x8 = 64 cores, or all the cores)
|
|
#SBATCH --time=2-00:00:00
|
|
#SBATCH --output=/home/rcadene/slurm/%j.out
|
|
#SBATCH --error=/home/rcadene/slurm/%j.err
|
|
#SBATCH --qos=medium
|
|
#SBATCH --mail-user=re.cadene@gmail.com
|
|
#SBATCH --mail-type=ALL
|
|
|
|
CMD=$@
|
|
echo "command: $CMD"
|
|
|
|
apptainer exec --nv \
|
|
~/apptainer/nvidia_cuda:12.2.2-devel-ubuntu22.04.sif $SHELL
|
|
|
|
source ~/.bashrc
|
|
#conda activate fowm
|
|
conda activate lerobot
|
|
|
|
srun $CMD
|