Files
lerobot/tests/policies/test_policies.py

495 lines
20 KiB
Python

#!/usr/bin/env python
# Copyright 2024 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import inspect
from copy import deepcopy
from pathlib import Path
import einops
import pytest
import torch
from packaging import version
from safetensors.torch import load_file
from lerobot import available_policies
from lerobot.common.datasets.factory import make_dataset
from lerobot.common.datasets.utils import cycle, dataset_to_policy_features
from lerobot.common.envs.factory import make_env, make_env_config
from lerobot.common.envs.utils import preprocess_observation
from lerobot.common.optim.factory import make_optimizer_and_scheduler
from lerobot.common.policies.act.modeling_act import ACTTemporalEnsembler
from lerobot.common.policies.factory import (
get_policy_class,
make_policy,
make_policy_config,
)
from lerobot.common.policies.normalize import Normalize, Unnormalize
from lerobot.common.policies.pretrained import PreTrainedPolicy
from lerobot.common.utils.random_utils import seeded_context
from lerobot.configs.default import DatasetConfig
from lerobot.configs.train import TrainPipelineConfig
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from tests.artifacts.policies.save_policy_to_safetensors import get_policy_stats
from tests.utils import DEVICE, require_cpu, require_env, require_x86_64_kernel
@pytest.fixture
def dummy_dataset_metadata(lerobot_dataset_metadata_factory, info_factory, tmp_path):
# Create only one camera input which is squared to fit all current policy constraints
# e.g. vqbet and tdmpc works with one camera only, and tdmpc requires it to be squared
camera_features = {
"observation.images.laptop": {
"shape": (84, 84, 3),
"names": ["height", "width", "channels"],
"info": None,
},
}
motor_features = {
"action": {
"dtype": "float32",
"shape": (6,),
"names": ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"],
},
"observation.state": {
"dtype": "float32",
"shape": (6,),
"names": ["shoulder_pan", "shoulder_lift", "elbow_flex", "wrist_flex", "wrist_roll", "gripper"],
},
}
info = info_factory(
total_episodes=1, total_frames=1, camera_features=camera_features, motor_features=motor_features
)
ds_meta = lerobot_dataset_metadata_factory(root=tmp_path / "init", info=info)
return ds_meta
@pytest.mark.parametrize("policy_name", available_policies)
def test_get_policy_and_config_classes(policy_name: str):
"""Check that the correct policy and config classes are returned."""
policy_cls = get_policy_class(policy_name)
policy_cfg = make_policy_config(policy_name)
assert policy_cls.name == policy_name
assert issubclass(
policy_cfg.__class__, inspect.signature(policy_cls.__init__).parameters["config"].annotation
)
@pytest.mark.parametrize(
"ds_repo_id,env_name,env_kwargs,policy_name,policy_kwargs",
[
("lerobot/xarm_lift_medium", "xarm", {}, "tdmpc", {"use_mpc": True}),
("lerobot/pusht", "pusht", {}, "diffusion", {}),
("lerobot/pusht", "pusht", {}, "vqbet", {}),
("lerobot/pusht", "pusht", {}, "act", {}),
("lerobot/aloha_sim_insertion_human", "aloha", {"task": "AlohaInsertion-v0"}, "act", {}),
(
"lerobot/aloha_sim_insertion_scripted",
"aloha",
{"task": "AlohaInsertion-v0"},
"act",
{},
),
(
"lerobot/aloha_sim_insertion_human",
"aloha",
{"task": "AlohaInsertion-v0"},
"diffusion",
{},
),
(
"lerobot/aloha_sim_transfer_cube_human",
"aloha",
{"task": "AlohaTransferCube-v0"},
"act",
{},
),
(
"lerobot/aloha_sim_transfer_cube_scripted",
"aloha",
{"task": "AlohaTransferCube-v0"},
"act",
{},
),
],
)
@require_env
def test_policy(ds_repo_id, env_name, env_kwargs, policy_name, policy_kwargs):
"""
Tests:
- Making the policy object.
- Checking that the policy follows the correct protocol and subclasses nn.Module
and PyTorchModelHubMixin.
- Updating the policy.
- Using the policy to select actions at inference time.
- Test the action can be applied to the policy
Note: We test various combinations of policy and dataset. The combinations are by no means exhaustive,
and for now we add tests as we see fit.
"""
train_cfg = TrainPipelineConfig(
# TODO(rcadene, aliberts): remove dataset download
dataset=DatasetConfig(repo_id=ds_repo_id, episodes=[0]),
policy=make_policy_config(policy_name, **policy_kwargs),
env=make_env_config(env_name, **env_kwargs),
)
# Check that we can make the policy object.
dataset = make_dataset(train_cfg)
policy = make_policy(train_cfg.policy, ds_meta=dataset.meta)
assert isinstance(policy, PreTrainedPolicy)
# Check that we run select_actions and get the appropriate output.
env = make_env(train_cfg.env, n_envs=2)
dataloader = torch.utils.data.DataLoader(
dataset,
num_workers=0,
batch_size=2,
shuffle=True,
pin_memory=DEVICE != "cpu",
drop_last=True,
)
dl_iter = cycle(dataloader)
batch = next(dl_iter)
for key in batch:
if isinstance(batch[key], torch.Tensor):
batch[key] = batch[key].to(DEVICE, non_blocking=True)
# Test updating the policy (and test that it does not mutate the batch)
batch_ = deepcopy(batch)
policy.forward(batch)
assert set(batch) == set(batch_), "Batch keys are not the same after a forward pass."
assert all(
torch.equal(batch[k], batch_[k]) if isinstance(batch[k], torch.Tensor) else batch[k] == batch_[k]
for k in batch
), "Batch values are not the same after a forward pass."
# reset the policy and environment
policy.reset()
observation, _ = env.reset(seed=train_cfg.seed)
# apply transform to normalize the observations
observation = preprocess_observation(observation)
# send observation to device/gpu
observation = {key: observation[key].to(DEVICE, non_blocking=True) for key in observation}
# get the next action for the environment (also check that the observation batch is not modified)
observation_ = deepcopy(observation)
with torch.inference_mode():
action = policy.select_action(observation).cpu().numpy()
assert set(observation) == set(observation_), (
"Observation batch keys are not the same after a forward pass."
)
assert all(torch.equal(observation[k], observation_[k]) for k in observation), (
"Observation batch values are not the same after a forward pass."
)
# Test step through policy
env.step(action)
# TODO(rcadene, aliberts): This test is quite end-to-end. Move this test in test_optimizer?
def test_act_backbone_lr():
"""
Test that the ACT policy can be instantiated with a different learning rate for the backbone.
"""
cfg = TrainPipelineConfig(
# TODO(rcadene, aliberts): remove dataset download
dataset=DatasetConfig(repo_id="lerobot/aloha_sim_insertion_scripted", episodes=[0]),
policy=make_policy_config("act", optimizer_lr=0.01, optimizer_lr_backbone=0.001),
)
cfg.validate() # Needed for auto-setting some parameters
assert cfg.policy.optimizer_lr == 0.01
assert cfg.policy.optimizer_lr_backbone == 0.001
dataset = make_dataset(cfg)
policy = make_policy(cfg.policy, ds_meta=dataset.meta)
optimizer, _ = make_optimizer_and_scheduler(cfg, policy)
assert len(optimizer.param_groups) == 2
assert optimizer.param_groups[0]["lr"] == cfg.policy.optimizer_lr
assert optimizer.param_groups[1]["lr"] == cfg.policy.optimizer_lr_backbone
assert len(optimizer.param_groups[0]["params"]) == 133
assert len(optimizer.param_groups[1]["params"]) == 20
@pytest.mark.parametrize("policy_name", available_policies)
def test_policy_defaults(dummy_dataset_metadata, policy_name: str):
"""Check that the policy can be instantiated with defaults."""
policy_cls = get_policy_class(policy_name)
policy_cfg = make_policy_config(policy_name)
features = dataset_to_policy_features(dummy_dataset_metadata.features)
policy_cfg.output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
policy_cfg.input_features = {
key: ft for key, ft in features.items() if key not in policy_cfg.output_features
}
policy_cls(policy_cfg)
@pytest.mark.parametrize("policy_name", available_policies)
def test_save_and_load_pretrained(dummy_dataset_metadata, tmp_path, policy_name: str):
policy_cls = get_policy_class(policy_name)
policy_cfg = make_policy_config(policy_name)
features = dataset_to_policy_features(dummy_dataset_metadata.features)
policy_cfg.output_features = {key: ft for key, ft in features.items() if ft.type is FeatureType.ACTION}
policy_cfg.input_features = {
key: ft for key, ft in features.items() if key not in policy_cfg.output_features
}
policy = policy_cls(policy_cfg)
policy.to(policy_cfg.device)
save_dir = tmp_path / f"test_save_and_load_pretrained_{policy_cls.__name__}"
policy.save_pretrained(save_dir)
loaded_policy = policy_cls.from_pretrained(save_dir, config=policy_cfg)
torch.testing.assert_close(list(policy.parameters()), list(loaded_policy.parameters()), rtol=0, atol=0)
@pytest.mark.parametrize("insert_temporal_dim", [False, True])
def test_normalize(insert_temporal_dim):
"""
Test that normalize/unnormalize can run without exceptions when properly set up, and that they raise
an exception when the forward pass is called without the stats having been provided.
TODO(rcadene, alexander-soare): This should also test that the normalization / unnormalization works as
expected.
"""
input_features = {
"observation.image": PolicyFeature(
type=FeatureType.VISUAL,
shape=(3, 96, 96),
),
"observation.state": PolicyFeature(
type=FeatureType.STATE,
shape=(10,),
),
}
output_features = {
"action": PolicyFeature(
type=FeatureType.ACTION,
shape=(5,),
),
}
norm_map = {
"VISUAL": NormalizationMode.MEAN_STD,
"STATE": NormalizationMode.MIN_MAX,
"ACTION": NormalizationMode.MIN_MAX,
}
dataset_stats = {
"observation.image": {
"mean": torch.randn(3, 1, 1),
"std": torch.randn(3, 1, 1),
"min": torch.randn(3, 1, 1),
"max": torch.randn(3, 1, 1),
},
"observation.state": {
"mean": torch.randn(10),
"std": torch.randn(10),
"min": torch.randn(10),
"max": torch.randn(10),
},
"action": {
"mean": torch.randn(5),
"std": torch.randn(5),
"min": torch.randn(5),
"max": torch.randn(5),
},
}
bsize = 2
input_batch = {
"observation.image": torch.randn(bsize, 3, 96, 96),
"observation.state": torch.randn(bsize, 10),
}
output_batch = {
"action": torch.randn(bsize, 5),
}
if insert_temporal_dim:
tdim = 4
for key in input_batch:
# [2,3,96,96] -> [2,tdim,3,96,96]
input_batch[key] = torch.stack([input_batch[key]] * tdim, dim=1)
for key in output_batch:
output_batch[key] = torch.stack([output_batch[key]] * tdim, dim=1)
# test without stats
normalize = Normalize(input_features, norm_map, stats=None)
with pytest.raises(AssertionError):
normalize(input_batch)
# test with stats
normalize = Normalize(input_features, norm_map, stats=dataset_stats)
normalize(input_batch)
# test loading pretrained models
new_normalize = Normalize(input_features, norm_map, stats=None)
new_normalize.load_state_dict(normalize.state_dict())
new_normalize(input_batch)
# test without stats
unnormalize = Unnormalize(output_features, norm_map, stats=None)
with pytest.raises(AssertionError):
unnormalize(output_batch)
# test with stats
unnormalize = Unnormalize(output_features, norm_map, stats=dataset_stats)
unnormalize(output_batch)
# test loading pretrained models
new_unnormalize = Unnormalize(output_features, norm_map, stats=None)
new_unnormalize.load_state_dict(unnormalize.state_dict())
unnormalize(output_batch)
@pytest.mark.parametrize(
"ds_repo_id, policy_name, policy_kwargs, file_name_extra",
[
# TODO(alexander-soare): `policy.use_mpc=false` was previously the default in the config yaml but it
# was changed to true. For some reason, tests would pass locally, but not in CI. So here we override
# to test with `policy.use_mpc=false`.
("lerobot/xarm_lift_medium", "tdmpc", {"use_mpc": False}, "use_policy"),
# ("lerobot/xarm_lift_medium", "tdmpc", {"use_mpc": True}, "use_mpc"),
# TODO(rcadene): the diffusion model was normalizing the image in mean=0.5 std=0.5 which is a hack supposed to
# to normalize the image at all. In our current codebase we dont normalize at all. But there is still a minor difference
# that fails the test. However, by testing to normalize the image with 0.5 0.5 in the current codebase, the test pass.
# Thus, we deactivate this test for now.
(
"lerobot/pusht",
"diffusion",
{
"n_action_steps": 8,
"num_inference_steps": 10,
"down_dims": [128, 256, 512],
},
"",
),
("lerobot/aloha_sim_insertion_human", "act", {"n_action_steps": 10}, ""),
(
"lerobot/aloha_sim_insertion_human",
"act",
{"n_action_steps": 1000, "chunk_size": 1000},
"1000_steps",
),
],
)
# As artifacts have been generated on an x86_64 kernel, this test won't
# pass if it's run on another platform due to floating point errors
@require_x86_64_kernel
@require_cpu
def test_backward_compatibility(ds_repo_id: str, policy_name: str, policy_kwargs: dict, file_name_extra: str):
"""
NOTE: If this test does not pass, and you have intentionally changed something in the policy:
1. Inspect the differences in policy outputs and make sure you can account for them. Your PR should
include a report on what changed and how that affected the outputs.
2. Go to the `if __name__ == "__main__"` block of `tests/scripts/save_policy_to_safetensors.py` and
add the policies you want to update the test artifacts for.
3. Run `python tests/scripts/save_policy_to_safetensors.py`. The test artifact
should be updated.
4. Check that this test now passes.
5. Remember to restore `tests/scripts/save_policy_to_safetensors.py` to its original state.
6. Remember to stage and commit the resulting changes to `tests/artifacts`.
NOTE: If the test does not pass, and you don't change the policy, it is likely that the test artifact
is out of date. For example, some PyTorch versions have different randomness, see this PR:
https://github.com/huggingface/lerobot/pull/1127.
"""
# NOTE: ACT policy has different randomness, after PyTorch 2.7.0
if policy_name == "act" and version.parse(torch.__version__) < version.parse("2.7.0"):
pytest.skip(f"Skipping act policy test with PyTorch {torch.__version__}. Requires PyTorch >= 2.7.0")
ds_name = ds_repo_id.split("/")[-1]
artifact_dir = Path("tests/artifacts/policies") / f"{ds_name}_{policy_name}_{file_name_extra}"
saved_output_dict = load_file(artifact_dir / "output_dict.safetensors")
saved_grad_stats = load_file(artifact_dir / "grad_stats.safetensors")
saved_param_stats = load_file(artifact_dir / "param_stats.safetensors")
saved_actions = load_file(artifact_dir / "actions.safetensors")
output_dict, grad_stats, param_stats, actions = get_policy_stats(ds_repo_id, policy_name, policy_kwargs)
for key in saved_output_dict:
torch.testing.assert_close(output_dict[key], saved_output_dict[key])
for key in saved_grad_stats:
torch.testing.assert_close(grad_stats[key], saved_grad_stats[key])
for key in saved_param_stats:
torch.testing.assert_close(param_stats[key], saved_param_stats[key])
for key in saved_actions:
rtol, atol = (2e-3, 5e-6) if policy_name == "diffusion" else (None, None) # HACK
torch.testing.assert_close(actions[key], saved_actions[key], rtol=rtol, atol=atol)
def test_act_temporal_ensembler():
"""Check that the online method in ACTTemporalEnsembler matches a simple offline calculation."""
temporal_ensemble_coeff = 0.01
chunk_size = 100
episode_length = 101
ensembler = ACTTemporalEnsembler(temporal_ensemble_coeff, chunk_size)
# An batch of arbitrary sequences of 1D actions we wish to compute the average over. We'll keep the
# "action space" in [-1, 1]. Apart from that, there is no real reason for the numbers chosen.
with seeded_context(0):
# Dimension is (batch, episode_length, chunk_size, action_dim(=1))
# Stepping through the episode_length dim is like running inference at each rollout step and getting
# a different action chunk.
batch_seq = torch.stack(
[
torch.rand(episode_length, chunk_size) * 0.05 - 0.6,
torch.rand(episode_length, chunk_size) * 0.02 - 0.01,
torch.rand(episode_length, chunk_size) * 0.2 + 0.3,
],
dim=0,
).unsqueeze(-1) # unsqueeze for action dim
batch_size = batch_seq.shape[0]
# Exponential weighting (normalized). Unsqueeze once to match the position of the `episode_length`
# dimension of `batch_seq`.
weights = torch.exp(-temporal_ensemble_coeff * torch.arange(chunk_size)).unsqueeze(-1)
# Simulate stepping through a rollout and computing a batch of actions with model on each step.
for i in range(episode_length):
# Mock a batch of actions.
actions = torch.zeros(size=(batch_size, chunk_size, 1)) + batch_seq[:, i]
online_avg = ensembler.update(actions)
# Simple offline calculation: avg = Σ(aᵢ*wᵢ) / Σ(wᵢ).
# Note: The complicated bit here is the slicing. Think about the (episode_length, chunk_size) grid.
# What we want to do is take diagonal slices across it starting from the left.
# eg: chunk_size=4, episode_length=6
# ┌───────┐
# │0 1 2 3│
# │1 2 3 4│
# │2 3 4 5│
# │3 4 5 6│
# │4 5 6 7│
# │5 6 7 8│
# └───────┘
chunk_indices = torch.arange(min(i, chunk_size - 1), -1, -1)
episode_step_indices = torch.arange(i + 1)[-len(chunk_indices) :]
seq_slice = batch_seq[:, episode_step_indices, chunk_indices]
offline_avg = (
einops.reduce(seq_slice * weights[: i + 1], "b s 1 -> b 1", "sum") / weights[: i + 1].sum()
)
# Sanity check. The average should be between the extrema.
assert torch.all(einops.reduce(seq_slice, "b s 1 -> b 1", "min") <= offline_avg)
assert torch.all(offline_avg <= einops.reduce(seq_slice, "b s 1 -> b 1", "max"))
# Selected atol=1e-4 keeping in mind actions in [-1, 1] and excepting 0.01% error.
torch.testing.assert_close(online_avg, offline_avg, rtol=1e-4, atol=1e-4)