Files
lerobot/tests/policies/pi0_pi05/test_pi0.py
2025-10-08 14:27:52 +02:00

132 lines
4.2 KiB
Python

#!/usr/bin/env python
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Test script to verify PI0 policy integration with LeRobot, only meant to be run locally!"""
import os
import pytest
import torch
# Skip this entire module in CI
pytestmark = pytest.mark.skipif(
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
reason="This test requires local OpenPI installation and is not meant for CI",
)
from lerobot.policies.factory import make_policy_config # noqa: E402
from lerobot.policies.pi0 import ( # noqa: E402
PI0Config,
PI0Policy,
make_pi0_pre_post_processors, # noqa: E402
)
from lerobot.utils.random_utils import set_seed # noqa: E402
from tests.utils import require_cuda # noqa: E402
@require_cuda
def test_policy_instantiation():
# Create config
set_seed(42)
config = PI0Config(max_action_dim=7, max_state_dim=14, dtype="float32")
# Set up input_features and output_features in the config
from lerobot.configs.types import FeatureType, PolicyFeature
config.input_features = {
"observation.state": PolicyFeature(
type=FeatureType.STATE,
shape=(14,),
),
"observation.images.base_0_rgb": PolicyFeature(
type=FeatureType.VISUAL,
shape=(3, 224, 224),
),
}
config.output_features = {
"action": PolicyFeature(
type=FeatureType.ACTION,
shape=(7,),
),
}
# Create dummy dataset stats
dataset_stats = {
"observation.state": {
"mean": torch.zeros(14),
"std": torch.ones(14),
},
"action": {
"mean": torch.zeros(7),
"std": torch.ones(7),
},
"observation.images.base_0_rgb": {
"mean": torch.zeros(3, 224, 224),
"std": torch.ones(3, 224, 224),
},
}
# Instantiate policy
policy = PI0Policy(config)
preprocessor, postprocessor = make_pi0_pre_post_processors(config=config, dataset_stats=dataset_stats)
# Test forward pass with dummy data
batch_size = 1
device = config.device
batch = {
"observation.state": torch.randn(batch_size, 14, dtype=torch.float32, device=device),
"action": torch.randn(batch_size, config.chunk_size, 7, dtype=torch.float32, device=device),
"observation.images.base_0_rgb": torch.rand(
batch_size, 3, 224, 224, dtype=torch.float32, device=device
), # Use rand for [0,1] range
"task": ["Pick up the object"] * batch_size,
}
batch = preprocessor(batch)
try:
loss, loss_dict = policy.forward(batch)
print(f"Forward pass successful. Loss: {loss_dict['loss']:.4f}")
except Exception as e:
print(f"Forward pass failed: {e}")
raise
try:
with torch.no_grad():
action = policy.select_action(batch)
action = postprocessor(action)
print(f"Action: {action}")
print(f"Action prediction successful. Action shape: {action.shape}")
except Exception as e:
print(f"Action prediction failed: {e}")
raise
@require_cuda
def test_config_creation():
"""Test policy config creation through factory."""
try:
config = make_policy_config(
policy_type="pi0",
max_action_dim=7,
max_state_dim=14,
)
print("Config created successfully through factory")
print(f" Config type: {type(config).__name__}")
print(f" PaliGemma variant: {config.paligemma_variant}")
print(f" Action expert variant: {config.action_expert_variant}")
except Exception as e:
print(f"Config creation failed: {e}")
raise