forked from tangger/lerobot
132 lines
4.2 KiB
Python
132 lines
4.2 KiB
Python
#!/usr/bin/env python
|
|
|
|
# Copyright 2025 The HuggingFace Inc. team. All rights reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""Test script to verify PI0 policy integration with LeRobot, only meant to be run locally!"""
|
|
|
|
import os
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
# Skip this entire module in CI
|
|
pytestmark = pytest.mark.skipif(
|
|
os.environ.get("CI") == "true" or os.environ.get("GITHUB_ACTIONS") == "true",
|
|
reason="This test requires local OpenPI installation and is not meant for CI",
|
|
)
|
|
|
|
from lerobot.policies.factory import make_policy_config # noqa: E402
|
|
from lerobot.policies.pi0 import ( # noqa: E402
|
|
PI0Config,
|
|
PI0Policy,
|
|
make_pi0_pre_post_processors, # noqa: E402
|
|
)
|
|
from lerobot.utils.random_utils import set_seed # noqa: E402
|
|
from tests.utils import require_cuda # noqa: E402
|
|
|
|
|
|
@require_cuda
|
|
def test_policy_instantiation():
|
|
# Create config
|
|
set_seed(42)
|
|
config = PI0Config(max_action_dim=7, max_state_dim=14, dtype="float32")
|
|
|
|
# Set up input_features and output_features in the config
|
|
from lerobot.configs.types import FeatureType, PolicyFeature
|
|
|
|
config.input_features = {
|
|
"observation.state": PolicyFeature(
|
|
type=FeatureType.STATE,
|
|
shape=(14,),
|
|
),
|
|
"observation.images.base_0_rgb": PolicyFeature(
|
|
type=FeatureType.VISUAL,
|
|
shape=(3, 224, 224),
|
|
),
|
|
}
|
|
|
|
config.output_features = {
|
|
"action": PolicyFeature(
|
|
type=FeatureType.ACTION,
|
|
shape=(7,),
|
|
),
|
|
}
|
|
|
|
# Create dummy dataset stats
|
|
dataset_stats = {
|
|
"observation.state": {
|
|
"mean": torch.zeros(14),
|
|
"std": torch.ones(14),
|
|
},
|
|
"action": {
|
|
"mean": torch.zeros(7),
|
|
"std": torch.ones(7),
|
|
},
|
|
"observation.images.base_0_rgb": {
|
|
"mean": torch.zeros(3, 224, 224),
|
|
"std": torch.ones(3, 224, 224),
|
|
},
|
|
}
|
|
|
|
# Instantiate policy
|
|
policy = PI0Policy(config)
|
|
preprocessor, postprocessor = make_pi0_pre_post_processors(config=config, dataset_stats=dataset_stats)
|
|
# Test forward pass with dummy data
|
|
batch_size = 1
|
|
device = config.device
|
|
batch = {
|
|
"observation.state": torch.randn(batch_size, 14, dtype=torch.float32, device=device),
|
|
"action": torch.randn(batch_size, config.chunk_size, 7, dtype=torch.float32, device=device),
|
|
"observation.images.base_0_rgb": torch.rand(
|
|
batch_size, 3, 224, 224, dtype=torch.float32, device=device
|
|
), # Use rand for [0,1] range
|
|
"task": ["Pick up the object"] * batch_size,
|
|
}
|
|
batch = preprocessor(batch)
|
|
try:
|
|
loss, loss_dict = policy.forward(batch)
|
|
print(f"Forward pass successful. Loss: {loss_dict['loss']:.4f}")
|
|
except Exception as e:
|
|
print(f"Forward pass failed: {e}")
|
|
raise
|
|
|
|
try:
|
|
with torch.no_grad():
|
|
action = policy.select_action(batch)
|
|
action = postprocessor(action)
|
|
print(f"Action: {action}")
|
|
print(f"Action prediction successful. Action shape: {action.shape}")
|
|
except Exception as e:
|
|
print(f"Action prediction failed: {e}")
|
|
raise
|
|
|
|
|
|
@require_cuda
|
|
def test_config_creation():
|
|
"""Test policy config creation through factory."""
|
|
try:
|
|
config = make_policy_config(
|
|
policy_type="pi0",
|
|
max_action_dim=7,
|
|
max_state_dim=14,
|
|
)
|
|
print("Config created successfully through factory")
|
|
print(f" Config type: {type(config).__name__}")
|
|
print(f" PaliGemma variant: {config.paligemma_variant}")
|
|
print(f" Action expert variant: {config.action_expert_variant}")
|
|
except Exception as e:
|
|
print(f"Config creation failed: {e}")
|
|
raise
|