Files
lerobot/lerobot/common/datasets/aggregate.py
2025-04-22 10:35:20 +02:00

250 lines
8.9 KiB
Python

import logging
import shutil
from pathlib import Path
import pandas as pd
import tqdm
from lerobot.common.datasets.compute_stats import aggregate_stats
from lerobot.common.datasets.lerobot_dataset import LeRobotDataset, LeRobotDatasetMetadata
from lerobot.common.datasets.utils import (
DEFAULT_CHUNK_SIZE,
DEFAULT_DATA_PATH,
DEFAULT_EPISODES_PATH,
DEFAULT_VIDEO_PATH,
write_info,
write_stats,
write_tasks,
)
from lerobot.common.utils.utils import init_logging
def validate_all_metadata(all_metadata: list[LeRobotDatasetMetadata]):
# validate same fps, robot_type, features
fps = all_metadata[0].fps
robot_type = all_metadata[0].robot_type
features = all_metadata[0].features
for meta in tqdm.tqdm(all_metadata, desc="Validate all meta data"):
if fps != meta.fps:
raise ValueError(f"Same fps is expected, but got fps={meta.fps} instead of {fps}.")
if robot_type != meta.robot_type:
raise ValueError(
f"Same robot_type is expected, but got robot_type={meta.robot_type} instead of {robot_type}."
)
if features != meta.features:
raise ValueError(
f"Same features is expected, but got features={meta.features} instead of {features}."
)
return fps, robot_type, features
def get_update_episode_and_task_func(episode_index_to_add, old_tasks, new_tasks):
def _update(row):
row["episode_index"] = row["episode_index"] + episode_index_to_add
task = old_tasks.iloc[row["task_index"]].name
row["task_index"] = new_tasks.loc[task].task_index.item()
return row
return _update
def get_update_meta_func(
meta_chunk_index_to_add,
meta_file_index_to_add,
data_chunk_index_to_add,
data_file_index_to_add,
videos_chunk_index_to_add,
videos_file_index_to_add,
frame_index_to_add,
):
def _update(row):
row["meta/episodes/chunk_index"] = row["meta/episodes/chunk_index"] + meta_chunk_index_to_add
row["meta/episodes/file_index"] = row["meta/episodes/file_index"] + meta_file_index_to_add
row["data/chunk_index"] = row["data/chunk_index"] + data_chunk_index_to_add
row["data/file_index"] = row["data/file_index"] + data_file_index_to_add
for key in videos_chunk_index_to_add:
row[f"videos/{key}/chunk_index"] = (
row[f"videos/{key}/chunk_index"] + videos_chunk_index_to_add[key]
)
row[f"videos/{key}/file_index"] = row[f"videos/{key}/file_index"] + videos_file_index_to_add[key]
row["dataset_from_index"] = row["dataset_from_index"] + frame_index_to_add
row["dataset_to_index"] = row["dataset_to_index"] + frame_index_to_add
return row
return _update
def aggregate_datasets(repo_ids: list[str], aggr_repo_id: str, roots: list[Path] = None, aggr_root=None):
logging.info("Start aggregate_datasets")
if roots is None:
all_metadata = [LeRobotDatasetMetadata(repo_id) for repo_id in repo_ids]
else:
all_metadata = [
LeRobotDatasetMetadata(repo_id, root=root) for repo_id, root in zip(repo_ids, roots, strict=False)
]
fps, robot_type, features = validate_all_metadata(all_metadata)
video_keys = [key for key in features if features[key]["dtype"] == "video"]
# Create resulting dataset folder
aggr_meta = LeRobotDatasetMetadata.create(
repo_id=aggr_repo_id,
fps=fps,
robot_type=robot_type,
features=features,
root=aggr_root,
)
aggr_root = aggr_meta.root
logging.info("Find all tasks")
unique_tasks = pd.concat([meta.tasks for meta in all_metadata]).index.unique()
aggr_meta.tasks = pd.DataFrame({"task_index": range(len(unique_tasks))}, index=unique_tasks)
num_episodes = 0
num_frames = 0
aggr_meta_chunk_idx = 0
aggr_meta_file_idx = 0
aggr_data_chunk_idx = 0
aggr_data_file_idx = 0
aggr_videos_chunk_idx = dict.fromkeys(video_keys, 0)
aggr_videos_file_idx = dict.fromkeys(video_keys, 0)
for meta in tqdm.tqdm(all_metadata, desc="Copy data and videos"):
meta_chunk_file_ids = {
(c, f)
for c, f in zip(
meta.episodes["meta/episodes/chunk_index"],
meta.episodes["meta/episodes/file_index"],
strict=False,
)
}
for chunk_idx, file_idx in meta_chunk_file_ids:
path = meta.root / DEFAULT_EPISODES_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
df = pd.read_parquet(path)
update_meta_func = get_update_meta_func(
aggr_meta_chunk_idx,
aggr_meta_file_idx,
aggr_data_chunk_idx,
aggr_data_file_idx,
aggr_videos_chunk_idx,
aggr_videos_file_idx,
num_frames,
)
df = df.apply(update_meta_func, axis=1)
aggr_path = aggr_root / DEFAULT_EPISODES_PATH.format(
chunk_index=aggr_meta_chunk_idx, file_index=aggr_meta_file_idx
)
aggr_path.parent.mkdir(parents=True, exist_ok=True)
df.to_parquet(aggr_path)
aggr_meta_file_idx += 1
if aggr_meta_file_idx >= DEFAULT_CHUNK_SIZE:
aggr_meta_file_idx = 0
aggr_meta_chunk_idx += 1
# cp videos
for key in video_keys:
video_chunk_file_ids = {
(c, f)
for c, f in zip(
meta.episodes[f"videos/{key}/chunk_index"],
meta.episodes[f"videos/{key}/file_index"],
strict=False,
)
}
for chunk_idx, file_idx in video_chunk_file_ids:
path = meta.root / DEFAULT_VIDEO_PATH.format(
video_key=key, chunk_index=chunk_idx, file_index=file_idx
)
aggr_path = aggr_root / DEFAULT_VIDEO_PATH.format(
video_key=key,
chunk_index=aggr_videos_chunk_idx[key],
file_index=aggr_videos_file_idx[key],
)
aggr_path.parent.mkdir(parents=True, exist_ok=True)
shutil.copy(str(path), str(aggr_path))
# copy_command = f"cp {video_path} {aggr_video_path} &"
# subprocess.Popen(copy_command, shell=True)
aggr_videos_file_idx[key] += 1
if aggr_videos_file_idx[key] >= DEFAULT_CHUNK_SIZE:
aggr_videos_file_idx[key] = 0
aggr_videos_chunk_idx[key] += 1
data_chunk_file_ids = {
(c, f)
for c, f in zip(meta.episodes["data/chunk_index"], meta.episodes["data/file_index"], strict=False)
}
for chunk_idx, file_idx in data_chunk_file_ids:
path = meta.root / DEFAULT_DATA_PATH.format(chunk_index=chunk_idx, file_index=file_idx)
df = pd.read_parquet(path)
# TODO(rcadene): update frame index
update_data_func = get_update_episode_and_task_func(num_episodes, meta.tasks, aggr_meta.tasks)
df = df.apply(update_data_func, axis=1)
aggr_path = aggr_root / DEFAULT_DATA_PATH.format(
chunk_index=aggr_data_chunk_idx, file_index=aggr_data_file_idx
)
aggr_path.parent.mkdir(parents=True, exist_ok=True)
df.to_parquet(aggr_path)
aggr_data_file_idx += 1
if aggr_data_file_idx >= DEFAULT_CHUNK_SIZE:
aggr_data_file_idx = 0
aggr_data_chunk_idx += 1
num_episodes += meta.total_episodes
num_frames += meta.total_frames
logging.info("write tasks")
write_tasks(aggr_meta.tasks, aggr_meta.root)
logging.info("write info")
aggr_meta.info["total_episodes"] = sum([meta.total_episodes for meta in all_metadata])
aggr_meta.info["total_frames"] = sum([meta.total_frames for meta in all_metadata])
aggr_meta.info["splits"] = {"train": f"0:{aggr_meta.total_episodes}"}
write_info(aggr_meta.info, aggr_meta.root)
logging.info("write stats")
aggr_meta.stats = aggregate_stats([meta.stats for meta in all_metadata])
write_stats(aggr_meta.stats, aggr_meta.root)
if __name__ == "__main__":
init_logging()
repo_id = "cadene/droid"
aggr_repo_id = "cadene/droid"
datetime = "2025-02-22_11-23-54"
# root = Path(f"/tmp/{repo_id}")
# if root.exists():
# shutil.rmtree(root)
root = None
# all_metadata = [LeRobotDatasetMetadata(f"{repo_id}_{datetime}_world_2048_rank_{rank}") for rank in range(2048)]
# aggregate_datasets(
# all_metadata,
# aggr_repo_id,
# root=root,
# )
aggr_dataset = LeRobotDataset(
repo_id=aggr_repo_id,
root=root,
)
aggr_dataset.push_to_hub(tags=["openx"])
# for meta in all_metadata:
# dataset = LeRobotDataset(repo_id=meta.repo_id, root=meta.root)
# dataset.push_to_hub(tags=["openx"])