Files
lerobot/tests/policies/hilserl/classifier/test_modeling_classifier.py
2025-04-24 16:10:56 +02:00

134 lines
4.3 KiB
Python

import torch
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
ClassifierConfig,
ClassifierOutput,
)
from lerobot.configs.types import FeatureType, NormalizationMode, PolicyFeature
from tests.utils import require_package
def test_classifier_output():
output = ClassifierOutput(
logits=torch.tensor([1, 2, 3]),
probabilities=torch.tensor([0.1, 0.2, 0.3]),
hidden_states=None,
)
assert (
f"{output}"
== "ClassifierOutput(logits=tensor([1, 2, 3]), probabilities=tensor([0.1000, 0.2000, 0.3000]), hidden_states=None)"
)
@require_package("transformers")
def test_binary_classifier_with_default_params():
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
Classifier,
)
config = ClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(1,)),
}
config.normalization_mapping = {
"VISUAL": NormalizationMode.IDENTITY,
"REWARD": NormalizationMode.IDENTITY,
}
config.num_cameras = 1
classifier = Classifier(config)
batch_size = 10
input = {
"observation.image": torch.rand((batch_size, 3, 224, 224)),
"next.reward": torch.randint(low=0, high=2, size=(batch_size,)).float(),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 224, 224])
assert labels.shape == torch.Size([batch_size])
output = classifier.predict(images)
assert output is not None
assert output.logits.size() == torch.Size([batch_size])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 512])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@require_package("transformers")
def test_multiclass_classifier():
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
Classifier,
)
num_classes = 5
config = ClassifierConfig()
config.input_features = {
"observation.image": PolicyFeature(type=FeatureType.VISUAL, shape=(3, 224, 224)),
}
config.output_features = {
"next.reward": PolicyFeature(type=FeatureType.REWARD, shape=(num_classes,)),
}
config.num_cameras = 1
config.num_classes = num_classes
classifier = Classifier(config)
batch_size = 10
input = {
"observation.image": torch.rand((batch_size, 3, 224, 224)),
"next.reward": torch.rand((batch_size, num_classes)),
}
images, labels = classifier.extract_images_and_labels(input)
assert len(images) == 1
assert images[0].shape == torch.Size([batch_size, 3, 224, 224])
assert labels.shape == torch.Size([batch_size, num_classes])
output = classifier.predict(images)
assert output is not None
assert output.logits.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.logits).any(), "Tensor contains NaN values"
assert output.probabilities.shape == torch.Size([batch_size, num_classes])
assert not torch.isnan(output.probabilities).any(), "Tensor contains NaN values"
assert output.hidden_states.shape == torch.Size([batch_size, 512])
assert not torch.isnan(output.hidden_states).any(), "Tensor contains NaN values"
@require_package("transformers")
def test_default_device():
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
Classifier,
)
config = ClassifierConfig()
assert config.device == "cpu"
classifier = Classifier(config)
for p in classifier.parameters():
assert p.device == torch.device("cpu")
@require_package("transformers")
def test_explicit_device_setup():
from lerobot.common.policies.hilserl.classifier.modeling_classifier import (
Classifier,
)
config = ClassifierConfig(device="cpu")
assert config.device == "cpu"
classifier = Classifier(config)
for p in classifier.parameters():
assert p.device == torch.device("cpu")