# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md). # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to train RL agent with skrl. Visit the skrl documentation (https://skrl.readthedocs.io) to see the examples structured in a more user-friendly way. """ """Launch Isaac Sim Simulator first.""" import argparse import sys from isaaclab.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Train an RL agent with skrl.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).") parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument( "--agent", type=str, default=None, help=( "Name of the RL agent configuration entry point. Defaults to None, in which case the argument " "--algorithm is used to determine the default agent configuration entry point." ), ) parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") parser.add_argument( "--distributed", action="store_true", default=False, help="Run training with multiple GPUs or nodes." ) parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint to resume training.") parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.") parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.") parser.add_argument( "--ml_framework", type=str, default="torch", choices=["torch", "jax", "jax-numpy"], help="The ML framework used for training the skrl agent.", ) parser.add_argument( "--algorithm", type=str, default="PPO", choices=["AMP", "PPO", "IPPO", "MAPPO"], help="The RL algorithm used for training the skrl agent.", ) # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli, hydra_args = parser.parse_known_args() # always enable cameras to record video if args_cli.video: args_cli.enable_cameras = True # clear out sys.argv for Hydra sys.argv = [sys.argv[0]] + hydra_args # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import random from datetime import datetime import omni import skrl from packaging import version # check for minimum supported skrl version SKRL_VERSION = "1.4.3" if version.parse(skrl.__version__) < version.parse(SKRL_VERSION): skrl.logger.error( f"Unsupported skrl version: {skrl.__version__}. " f"Install supported version using 'pip install skrl>={SKRL_VERSION}'" ) exit() if args_cli.ml_framework.startswith("torch"): from skrl.utils.runner.torch import Runner elif args_cli.ml_framework.startswith("jax"): from skrl.utils.runner.jax import Runner from isaaclab.envs import ( DirectMARLEnv, DirectMARLEnvCfg, DirectRLEnvCfg, ManagerBasedRLEnvCfg, multi_agent_to_single_agent, ) from isaaclab.utils.assets import retrieve_file_path from isaaclab.utils.dict import print_dict from isaaclab.utils.io import dump_yaml from isaaclab_rl.skrl import SkrlVecEnvWrapper import isaaclab_tasks # noqa: F401 from isaaclab_tasks.utils.hydra import hydra_task_config import mindbot.tasks # noqa: F401 # config shortcuts if args_cli.agent is None: algorithm = args_cli.algorithm.lower() agent_cfg_entry_point = "skrl_cfg_entry_point" if algorithm in ["ppo"] else f"skrl_{algorithm}_cfg_entry_point" else: agent_cfg_entry_point = args_cli.agent algorithm = agent_cfg_entry_point.split("_cfg")[0].split("skrl_")[-1].lower() @hydra_task_config(args_cli.task, agent_cfg_entry_point) def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict): """Train with skrl agent.""" # override configurations with non-hydra CLI arguments env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device # check for invalid combination of CPU device with distributed training if args_cli.distributed and args_cli.device is not None and "cpu" in args_cli.device: raise ValueError( "Distributed training is not supported when using CPU device. " "Please use GPU device (e.g., --device cuda) for distributed training." ) # multi-gpu training config if args_cli.distributed: env_cfg.sim.device = f"cuda:{app_launcher.local_rank}" # max iterations for training if args_cli.max_iterations: agent_cfg["trainer"]["timesteps"] = args_cli.max_iterations * agent_cfg["agent"]["rollouts"] agent_cfg["trainer"]["close_environment_at_exit"] = False # configure the ML framework into the global skrl variable if args_cli.ml_framework.startswith("jax"): skrl.config.jax.backend = "jax" if args_cli.ml_framework == "jax" else "numpy" # randomly sample a seed if seed = -1 if args_cli.seed == -1: args_cli.seed = random.randint(0, 10000) # set the agent and environment seed from command line # note: certain randomization occur in the environment initialization so we set the seed here agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"] env_cfg.seed = agent_cfg["seed"] # specify directory for logging experiments log_root_path = os.path.join("logs", "skrl", agent_cfg["agent"]["experiment"]["directory"]) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Logging experiment in directory: {log_root_path}") # specify directory for logging runs: {time-stamp}_{run_name} log_dir = datetime.now().strftime("%Y-%m-%d_%H-%M-%S") + f"_{algorithm}_{args_cli.ml_framework}" # The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849) print(f"Exact experiment name requested from command line: {log_dir}") if agent_cfg["agent"]["experiment"]["experiment_name"]: log_dir += f'_{agent_cfg["agent"]["experiment"]["experiment_name"]}' # set directory into agent config agent_cfg["agent"]["experiment"]["directory"] = log_root_path agent_cfg["agent"]["experiment"]["experiment_name"] = log_dir # update log_dir log_dir = os.path.join(log_root_path, log_dir) # dump the configuration into log-directory dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg) dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg) # get checkpoint path (to resume training) resume_path = retrieve_file_path(args_cli.checkpoint) if args_cli.checkpoint else None # set the IO descriptors export flag if requested if isinstance(env_cfg, ManagerBasedRLEnvCfg): env_cfg.export_io_descriptors = args_cli.export_io_descriptors else: omni.log.warn( "IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported." ) # set the log directory for the environment (works for all environment types) env_cfg.log_dir = log_dir # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # convert to single-agent instance if required by the RL algorithm if isinstance(env.unwrapped, DirectMARLEnv) and algorithm in ["ppo"]: env = multi_agent_to_single_agent(env) # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos", "train"), "step_trigger": lambda step: step % args_cli.video_interval == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for skrl env = SkrlVecEnvWrapper(env, ml_framework=args_cli.ml_framework) # same as: `wrap_env(env, wrapper="auto")` # configure and instantiate the skrl runner # https://skrl.readthedocs.io/en/latest/api/utils/runner.html runner = Runner(env, agent_cfg) # load checkpoint (if specified) if resume_path: print(f"[INFO] Loading model checkpoint from: {resume_path}") runner.agent.load(resume_path) # run training runner.run() # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()