# Copyright (c) 2022-2026, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md). # All rights reserved. # # SPDX-License-Identifier: BSD-3-Clause """ Script to play a checkpoint of an RL agent from skrl. Visit the skrl documentation (https://skrl.readthedocs.io) to see the examples structured in a more user-friendly way. """ """Launch Isaac Sim Simulator first.""" import argparse import sys from isaaclab.app import AppLauncher # add argparse arguments parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from skrl.") parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.") parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).") parser.add_argument( "--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations." ) parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.") parser.add_argument("--task", type=str, default=None, help="Name of the task.") parser.add_argument( "--agent", type=str, default=None, help=( "Name of the RL agent configuration entry point. Defaults to None, in which case the argument " "--algorithm is used to determine the default agent configuration entry point." ), ) parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.") parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment") parser.add_argument( "--use_pretrained_checkpoint", action="store_true", help="Use the pre-trained checkpoint from Nucleus.", ) parser.add_argument( "--ml_framework", type=str, default="torch", choices=["torch", "jax", "jax-numpy"], help="The ML framework used for training the skrl agent.", ) parser.add_argument( "--algorithm", type=str, default="PPO", choices=["AMP", "PPO", "IPPO", "MAPPO"], help="The RL algorithm used for training the skrl agent.", ) parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.") # append AppLauncher cli args AppLauncher.add_app_launcher_args(parser) # parse the arguments args_cli, hydra_args = parser.parse_known_args() # always enable cameras to record video if args_cli.video: args_cli.enable_cameras = True # clear out sys.argv for Hydra sys.argv = [sys.argv[0]] + hydra_args # launch omniverse app app_launcher = AppLauncher(args_cli) simulation_app = app_launcher.app """Rest everything follows.""" import gymnasium as gym import os import random import time import torch from packaging import version import skrl # check for minimum supported skrl version SKRL_VERSION = "1.4.3" if version.parse(skrl.__version__) < version.parse(SKRL_VERSION): skrl.logger.error( f"Unsupported skrl version: {skrl.__version__}. " f"Install supported version using 'pip install skrl>={SKRL_VERSION}'" ) exit() if args_cli.ml_framework.startswith("torch"): from skrl.utils.runner.torch import Runner elif args_cli.ml_framework.startswith("jax"): from skrl.utils.runner.jax import Runner from isaaclab.envs import ( DirectMARLEnv, DirectMARLEnvCfg, DirectRLEnvCfg, ManagerBasedRLEnvCfg, multi_agent_to_single_agent, ) from isaaclab.utils.dict import print_dict from isaaclab_rl.skrl import SkrlVecEnvWrapper from isaaclab_rl.utils.pretrained_checkpoint import get_published_pretrained_checkpoint import isaaclab_tasks # noqa: F401 from isaaclab_tasks.utils import get_checkpoint_path from isaaclab_tasks.utils.hydra import hydra_task_config import mindbot.tasks # noqa: F401 # config shortcuts if args_cli.agent is None: algorithm = args_cli.algorithm.lower() agent_cfg_entry_point = "skrl_cfg_entry_point" if algorithm in ["ppo"] else f"skrl_{algorithm}_cfg_entry_point" else: agent_cfg_entry_point = args_cli.agent algorithm = agent_cfg_entry_point.split("_cfg")[0].split("skrl_")[-1].lower() @hydra_task_config(args_cli.task, agent_cfg_entry_point) def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, experiment_cfg: dict): """Play with skrl agent.""" # grab task name for checkpoint path task_name = args_cli.task.split(":")[-1] train_task_name = task_name.replace("-Play", "") # override configurations with non-hydra CLI arguments env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device # configure the ML framework into the global skrl variable if args_cli.ml_framework.startswith("jax"): skrl.config.jax.backend = "jax" if args_cli.ml_framework == "jax" else "numpy" # randomly sample a seed if seed = -1 if args_cli.seed == -1: args_cli.seed = random.randint(0, 10000) # set the agent and environment seed from command line # note: certain randomization occur in the environment initialization so we set the seed here experiment_cfg["seed"] = args_cli.seed if args_cli.seed is not None else experiment_cfg["seed"] env_cfg.seed = experiment_cfg["seed"] # specify directory for logging experiments (load checkpoint) log_root_path = os.path.join("logs", "skrl", experiment_cfg["agent"]["experiment"]["directory"]) log_root_path = os.path.abspath(log_root_path) print(f"[INFO] Loading experiment from directory: {log_root_path}") # get checkpoint path if args_cli.use_pretrained_checkpoint: resume_path = get_published_pretrained_checkpoint("skrl", train_task_name) if not resume_path: print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.") return elif args_cli.checkpoint: resume_path = os.path.abspath(args_cli.checkpoint) else: resume_path = get_checkpoint_path( log_root_path, run_dir=f".*_{algorithm}_{args_cli.ml_framework}", other_dirs=["checkpoints"] ) log_dir = os.path.dirname(os.path.dirname(resume_path)) # set the log directory for the environment (works for all environment types) env_cfg.log_dir = log_dir # create isaac environment env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None) # convert to single-agent instance if required by the RL algorithm if isinstance(env.unwrapped, DirectMARLEnv) and algorithm in ["ppo"]: env = multi_agent_to_single_agent(env) # get environment (step) dt for real-time evaluation try: dt = env.step_dt except AttributeError: dt = env.unwrapped.step_dt # wrap for video recording if args_cli.video: video_kwargs = { "video_folder": os.path.join(log_dir, "videos", "play"), "step_trigger": lambda step: step == 0, "video_length": args_cli.video_length, "disable_logger": True, } print("[INFO] Recording videos during training.") print_dict(video_kwargs, nesting=4) env = gym.wrappers.RecordVideo(env, **video_kwargs) # wrap around environment for skrl env = SkrlVecEnvWrapper(env, ml_framework=args_cli.ml_framework) # same as: `wrap_env(env, wrapper="auto")` # configure and instantiate the skrl runner # https://skrl.readthedocs.io/en/latest/api/utils/runner.html experiment_cfg["trainer"]["close_environment_at_exit"] = False experiment_cfg["agent"]["experiment"]["write_interval"] = 0 # don't log to TensorBoard experiment_cfg["agent"]["experiment"]["checkpoint_interval"] = 0 # don't generate checkpoints runner = Runner(env, experiment_cfg) print(f"[INFO] Loading model checkpoint from: {resume_path}") runner.agent.load(resume_path) # set agent to evaluation mode runner.agent.set_running_mode("eval") # reset environment obs, _ = env.reset() timestep = 0 # simulate environment while simulation_app.is_running(): start_time = time.time() # run everything in inference mode with torch.inference_mode(): # agent stepping outputs = runner.agent.act(obs, timestep=0, timesteps=0) # - multi-agent (deterministic) actions if hasattr(env, "possible_agents"): actions = {a: outputs[-1][a].get("mean_actions", outputs[0][a]) for a in env.possible_agents} # - single-agent (deterministic) actions else: actions = outputs[-1].get("mean_actions", outputs[0]) # env stepping obs, _, _, _, _ = env.step(actions) if args_cli.video: timestep += 1 # exit the play loop after recording one video if timestep == args_cli.video_length: break # time delay for real-time evaluation sleep_time = dt - (time.time() - start_time) if args_cli.real_time and sleep_time > 0: time.sleep(sleep_time) # close the simulator env.close() if __name__ == "__main__": # run the main function main() # close sim app simulation_app.close()