Files
mindbot/scripts/rsl_rl/play.py
2025-11-13 17:37:07 +08:00

211 lines
7.8 KiB
Python

# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to play a checkpoint if an RL agent from RSL-RL."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from isaaclab.app import AppLauncher
# local imports
import cli_args # isort: skip
# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RSL-RL.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument(
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument(
"--agent", type=str, default="rsl_rl_cfg_entry_point", help="Name of the RL agent configuration entry point."
)
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
parser.add_argument(
"--use_pretrained_checkpoint",
action="store_true",
help="Use the pre-trained checkpoint from Nucleus.",
)
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
# append RSL-RL cli arguments
cli_args.add_rsl_rl_args(parser)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import os
import time
import torch
from rsl_rl.runners import DistillationRunner, OnPolicyRunner
from isaaclab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from isaaclab.utils.assets import retrieve_file_path
from isaaclab.utils.dict import print_dict
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
from isaaclab_rl.rsl_rl import RslRlBaseRunnerCfg, RslRlVecEnvWrapper, export_policy_as_jit, export_policy_as_onnx
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils import get_checkpoint_path
from isaaclab_tasks.utils.hydra import hydra_task_config
import mindbot.tasks # noqa: F401
@hydra_task_config(args_cli.task, args_cli.agent)
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: RslRlBaseRunnerCfg):
"""Play with RSL-RL agent."""
# grab task name for checkpoint path
task_name = args_cli.task.split(":")[-1]
train_task_name = task_name.replace("-Play", "")
# override configurations with non-hydra CLI arguments
agent_cfg: RslRlBaseRunnerCfg = cli_args.update_rsl_rl_cfg(agent_cfg, args_cli)
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
# set the environment seed
# note: certain randomizations occur in the environment initialization so we set the seed here
env_cfg.seed = agent_cfg.seed
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# specify directory for logging experiments
log_root_path = os.path.join("logs", "rsl_rl", agent_cfg.experiment_name)
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Loading experiment from directory: {log_root_path}")
if args_cli.use_pretrained_checkpoint:
resume_path = get_published_pretrained_checkpoint("rsl_rl", train_task_name)
if not resume_path:
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
return
elif args_cli.checkpoint:
resume_path = retrieve_file_path(args_cli.checkpoint)
else:
resume_path = get_checkpoint_path(log_root_path, agent_cfg.load_run, agent_cfg.load_checkpoint)
log_dir = os.path.dirname(resume_path)
# set the log directory for the environment (works for all environment types)
env_cfg.log_dir = log_dir
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "play"),
"step_trigger": lambda step: step == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for rsl-rl
env = RslRlVecEnvWrapper(env, clip_actions=agent_cfg.clip_actions)
print(f"[INFO]: Loading model checkpoint from: {resume_path}")
# load previously trained model
if agent_cfg.class_name == "OnPolicyRunner":
runner = OnPolicyRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)
elif agent_cfg.class_name == "DistillationRunner":
runner = DistillationRunner(env, agent_cfg.to_dict(), log_dir=None, device=agent_cfg.device)
else:
raise ValueError(f"Unsupported runner class: {agent_cfg.class_name}")
runner.load(resume_path)
# obtain the trained policy for inference
policy = runner.get_inference_policy(device=env.unwrapped.device)
# extract the neural network module
# we do this in a try-except to maintain backwards compatibility.
try:
# version 2.3 onwards
policy_nn = runner.alg.policy
except AttributeError:
# version 2.2 and below
policy_nn = runner.alg.actor_critic
# extract the normalizer
if hasattr(policy_nn, "actor_obs_normalizer"):
normalizer = policy_nn.actor_obs_normalizer
elif hasattr(policy_nn, "student_obs_normalizer"):
normalizer = policy_nn.student_obs_normalizer
else:
normalizer = None
# export policy to onnx/jit
export_model_dir = os.path.join(os.path.dirname(resume_path), "exported")
export_policy_as_jit(policy_nn, normalizer=normalizer, path=export_model_dir, filename="policy.pt")
export_policy_as_onnx(policy_nn, normalizer=normalizer, path=export_model_dir, filename="policy.onnx")
dt = env.unwrapped.step_dt
# reset environment
obs = env.get_observations()
timestep = 0
# simulate environment
while simulation_app.is_running():
start_time = time.time()
# run everything in inference mode
with torch.inference_mode():
# agent stepping
actions = policy(obs)
# env stepping
obs, _, dones, _ = env.step(actions)
# reset recurrent states for episodes that have terminated
policy_nn.reset(dones)
if args_cli.video:
timestep += 1
# Exit the play loop after recording one video
if timestep == args_cli.video_length:
break
# time delay for real-time evaluation
sleep_time = dt - (time.time() - start_time)
if args_cli.real_time and sleep_time > 0:
time.sleep(sleep_time)
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()