Files
mindbot/scripts/sb3/play.py
2025-11-13 17:37:07 +08:00

214 lines
7.8 KiB
Python

# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to play a checkpoint if an RL agent from Stable-Baselines3."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from pathlib import Path
from isaaclab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from Stable-Baselines3.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument(
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument(
"--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
)
parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.")
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
parser.add_argument(
"--use_pretrained_checkpoint",
action="store_true",
help="Use the pre-trained checkpoint from Nucleus.",
)
parser.add_argument(
"--use_last_checkpoint",
action="store_true",
help="When no checkpoint provided, use the last saved model. Otherwise use the best saved model.",
)
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
parser.add_argument(
"--keep_all_info",
action="store_true",
default=False,
help="Use a slower SB3 wrapper but keep all the extra training info.",
)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import os
import random
import time
import torch
from stable_baselines3 import PPO
from stable_baselines3.common.vec_env import VecNormalize
from isaaclab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from isaaclab.utils.dict import print_dict
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils.hydra import hydra_task_config
from isaaclab_tasks.utils.parse_cfg import get_checkpoint_path
import mindbot.tasks # noqa: F401
@hydra_task_config(args_cli.task, args_cli.agent)
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
"""Play with stable-baselines agent."""
# grab task name for checkpoint path
task_name = args_cli.task.split(":")[-1]
train_task_name = task_name.replace("-Play", "")
# randomly sample a seed if seed = -1
if args_cli.seed == -1:
args_cli.seed = random.randint(0, 10000)
# override configurations with non-hydra CLI arguments
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
# set the environment seed
# note: certain randomizations occur in the environment initialization so we set the seed here
env_cfg.seed = agent_cfg["seed"]
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# directory for logging into
log_root_path = os.path.join("logs", "sb3", train_task_name)
log_root_path = os.path.abspath(log_root_path)
# checkpoint and log_dir stuff
if args_cli.use_pretrained_checkpoint:
checkpoint_path = get_published_pretrained_checkpoint("sb3", train_task_name)
if not checkpoint_path:
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
return
elif args_cli.checkpoint is None:
# FIXME: last checkpoint doesn't seem to really use the last one'
if args_cli.use_last_checkpoint:
checkpoint = "model_.*.zip"
else:
checkpoint = "model.zip"
checkpoint_path = get_checkpoint_path(log_root_path, ".*", checkpoint, sort_alpha=False)
else:
checkpoint_path = args_cli.checkpoint
log_dir = os.path.dirname(checkpoint_path)
# set the log directory for the environment (works for all environment types)
env_cfg.log_dir = log_dir
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# post-process agent configuration
agent_cfg = process_sb3_cfg(agent_cfg, env.unwrapped.num_envs)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "play"),
"step_trigger": lambda step: step == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for stable baselines
env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
vec_norm_path = checkpoint_path.replace("/model", "/model_vecnormalize").replace(".zip", ".pkl")
vec_norm_path = Path(vec_norm_path)
# normalize environment (if needed)
if vec_norm_path.exists():
print(f"Loading saved normalization: {vec_norm_path}")
env = VecNormalize.load(vec_norm_path, env)
# do not update them at test time
env.training = False
# reward normalization is not needed at test time
env.norm_reward = False
elif "normalize_input" in agent_cfg:
env = VecNormalize(
env,
training=True,
norm_obs="normalize_input" in agent_cfg and agent_cfg.pop("normalize_input"),
clip_obs="clip_obs" in agent_cfg and agent_cfg.pop("clip_obs"),
)
# create agent from stable baselines
print(f"Loading checkpoint from: {checkpoint_path}")
agent = PPO.load(checkpoint_path, env, print_system_info=True)
dt = env.unwrapped.step_dt
# reset environment
obs = env.reset()
timestep = 0
# simulate environment
while simulation_app.is_running():
start_time = time.time()
# run everything in inference mode
with torch.inference_mode():
# agent stepping
actions, _ = agent.predict(obs, deterministic=True)
# env stepping
obs, _, _, _ = env.step(actions)
if args_cli.video:
timestep += 1
# Exit the play loop after recording one video
if timestep == args_cli.video_length:
break
# time delay for real-time evaluation
sleep_time = dt - (time.time() - start_time)
if args_cli.real_time and sleep_time > 0:
time.sleep(sleep_time)
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()