230 lines
8.5 KiB
Python
230 lines
8.5 KiB
Python
# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
|
|
# All rights reserved.
|
|
#
|
|
# SPDX-License-Identifier: BSD-3-Clause
|
|
|
|
|
|
"""Script to train RL agent with Stable Baselines3."""
|
|
|
|
"""Launch Isaac Sim Simulator first."""
|
|
|
|
import argparse
|
|
import contextlib
|
|
import signal
|
|
import sys
|
|
from pathlib import Path
|
|
|
|
from isaaclab.app import AppLauncher
|
|
|
|
# add argparse arguments
|
|
parser = argparse.ArgumentParser(description="Train an RL agent with Stable-Baselines3.")
|
|
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
|
|
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
|
|
parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
|
|
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
|
|
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
|
|
parser.add_argument(
|
|
"--agent", type=str, default="sb3_cfg_entry_point", help="Name of the RL agent configuration entry point."
|
|
)
|
|
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
|
|
parser.add_argument("--log_interval", type=int, default=100_000, help="Log data every n timesteps.")
|
|
parser.add_argument("--checkpoint", type=str, default=None, help="Continue the training from checkpoint.")
|
|
parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
|
|
parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
|
|
parser.add_argument(
|
|
"--keep_all_info",
|
|
action="store_true",
|
|
default=False,
|
|
help="Use a slower SB3 wrapper but keep all the extra training info.",
|
|
)
|
|
# append AppLauncher cli args
|
|
AppLauncher.add_app_launcher_args(parser)
|
|
# parse the arguments
|
|
args_cli, hydra_args = parser.parse_known_args()
|
|
# always enable cameras to record video
|
|
if args_cli.video:
|
|
args_cli.enable_cameras = True
|
|
|
|
# clear out sys.argv for Hydra
|
|
sys.argv = [sys.argv[0]] + hydra_args
|
|
|
|
# launch omniverse app
|
|
app_launcher = AppLauncher(args_cli)
|
|
simulation_app = app_launcher.app
|
|
|
|
|
|
def cleanup_pbar(*args):
|
|
"""
|
|
A small helper to stop training and
|
|
cleanup progress bar properly on ctrl+c
|
|
"""
|
|
import gc
|
|
|
|
tqdm_objects = [obj for obj in gc.get_objects() if "tqdm" in type(obj).__name__]
|
|
for tqdm_object in tqdm_objects:
|
|
if "tqdm_rich" in type(tqdm_object).__name__:
|
|
tqdm_object.close()
|
|
raise KeyboardInterrupt
|
|
|
|
|
|
# disable KeyboardInterrupt override
|
|
signal.signal(signal.SIGINT, cleanup_pbar)
|
|
|
|
"""Rest everything follows."""
|
|
|
|
import gymnasium as gym
|
|
import numpy as np
|
|
import os
|
|
import random
|
|
from datetime import datetime
|
|
|
|
import omni
|
|
from stable_baselines3 import PPO
|
|
from stable_baselines3.common.callbacks import CheckpointCallback, LogEveryNTimesteps
|
|
from stable_baselines3.common.vec_env import VecNormalize
|
|
|
|
from isaaclab.envs import (
|
|
DirectMARLEnv,
|
|
DirectMARLEnvCfg,
|
|
DirectRLEnvCfg,
|
|
ManagerBasedRLEnvCfg,
|
|
multi_agent_to_single_agent,
|
|
)
|
|
from isaaclab.utils.dict import print_dict
|
|
from isaaclab.utils.io import dump_yaml
|
|
|
|
from isaaclab_rl.sb3 import Sb3VecEnvWrapper, process_sb3_cfg
|
|
|
|
import isaaclab_tasks # noqa: F401
|
|
from isaaclab_tasks.utils.hydra import hydra_task_config
|
|
|
|
import mindbot.tasks # noqa: F401
|
|
|
|
|
|
@hydra_task_config(args_cli.task, args_cli.agent)
|
|
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
|
|
"""Train with stable-baselines agent."""
|
|
# randomly sample a seed if seed = -1
|
|
if args_cli.seed == -1:
|
|
args_cli.seed = random.randint(0, 10000)
|
|
|
|
# override configurations with non-hydra CLI arguments
|
|
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
|
|
agent_cfg["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["seed"]
|
|
# max iterations for training
|
|
if args_cli.max_iterations is not None:
|
|
agent_cfg["n_timesteps"] = args_cli.max_iterations * agent_cfg["n_steps"] * env_cfg.scene.num_envs
|
|
|
|
# set the environment seed
|
|
# note: certain randomizations occur in the environment initialization so we set the seed here
|
|
env_cfg.seed = agent_cfg["seed"]
|
|
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
|
|
|
|
# directory for logging into
|
|
run_info = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")
|
|
log_root_path = os.path.abspath(os.path.join("logs", "sb3", args_cli.task))
|
|
print(f"[INFO] Logging experiment in directory: {log_root_path}")
|
|
# The Ray Tune workflow extracts experiment name using the logging line below, hence, do not change it (see PR #2346, comment-2819298849)
|
|
print(f"Exact experiment name requested from command line: {run_info}")
|
|
log_dir = os.path.join(log_root_path, run_info)
|
|
# dump the configuration into log-directory
|
|
dump_yaml(os.path.join(log_dir, "params", "env.yaml"), env_cfg)
|
|
dump_yaml(os.path.join(log_dir, "params", "agent.yaml"), agent_cfg)
|
|
|
|
# save command used to run the script
|
|
command = " ".join(sys.orig_argv)
|
|
(Path(log_dir) / "command.txt").write_text(command)
|
|
|
|
# post-process agent configuration
|
|
agent_cfg = process_sb3_cfg(agent_cfg, env_cfg.scene.num_envs)
|
|
# read configurations about the agent-training
|
|
policy_arch = agent_cfg.pop("policy")
|
|
n_timesteps = agent_cfg.pop("n_timesteps")
|
|
|
|
# set the IO descriptors export flag if requested
|
|
if isinstance(env_cfg, ManagerBasedRLEnvCfg):
|
|
env_cfg.export_io_descriptors = args_cli.export_io_descriptors
|
|
else:
|
|
omni.log.warn(
|
|
"IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
|
|
)
|
|
|
|
# set the log directory for the environment (works for all environment types)
|
|
env_cfg.log_dir = log_dir
|
|
|
|
# create isaac environment
|
|
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
|
|
|
|
# convert to single-agent instance if required by the RL algorithm
|
|
if isinstance(env.unwrapped, DirectMARLEnv):
|
|
env = multi_agent_to_single_agent(env)
|
|
|
|
# wrap for video recording
|
|
if args_cli.video:
|
|
video_kwargs = {
|
|
"video_folder": os.path.join(log_dir, "videos", "train"),
|
|
"step_trigger": lambda step: step % args_cli.video_interval == 0,
|
|
"video_length": args_cli.video_length,
|
|
"disable_logger": True,
|
|
}
|
|
print("[INFO] Recording videos during training.")
|
|
print_dict(video_kwargs, nesting=4)
|
|
env = gym.wrappers.RecordVideo(env, **video_kwargs)
|
|
|
|
# wrap around environment for stable baselines
|
|
env = Sb3VecEnvWrapper(env, fast_variant=not args_cli.keep_all_info)
|
|
|
|
norm_keys = {"normalize_input", "normalize_value", "clip_obs"}
|
|
norm_args = {}
|
|
for key in norm_keys:
|
|
if key in agent_cfg:
|
|
norm_args[key] = agent_cfg.pop(key)
|
|
|
|
if norm_args and norm_args.get("normalize_input"):
|
|
print(f"Normalizing input, {norm_args=}")
|
|
env = VecNormalize(
|
|
env,
|
|
training=True,
|
|
norm_obs=norm_args["normalize_input"],
|
|
norm_reward=norm_args.get("normalize_value", False),
|
|
clip_obs=norm_args.get("clip_obs", 100.0),
|
|
gamma=agent_cfg["gamma"],
|
|
clip_reward=np.inf,
|
|
)
|
|
|
|
# create agent from stable baselines
|
|
agent = PPO(policy_arch, env, verbose=1, tensorboard_log=log_dir, **agent_cfg)
|
|
if args_cli.checkpoint is not None:
|
|
agent = agent.load(args_cli.checkpoint, env, print_system_info=True)
|
|
|
|
# callbacks for agent
|
|
checkpoint_callback = CheckpointCallback(save_freq=1000, save_path=log_dir, name_prefix="model", verbose=2)
|
|
callbacks = [checkpoint_callback, LogEveryNTimesteps(n_steps=args_cli.log_interval)]
|
|
|
|
# train the agent
|
|
with contextlib.suppress(KeyboardInterrupt):
|
|
agent.learn(
|
|
total_timesteps=n_timesteps,
|
|
callback=callbacks,
|
|
progress_bar=True,
|
|
log_interval=None,
|
|
)
|
|
# save the final model
|
|
agent.save(os.path.join(log_dir, "model"))
|
|
print("Saving to:")
|
|
print(os.path.join(log_dir, "model.zip"))
|
|
|
|
if isinstance(env, VecNormalize):
|
|
print("Saving normalization")
|
|
env.save(os.path.join(log_dir, "model_vecnormalize.pkl"))
|
|
|
|
# close the simulator
|
|
env.close()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
# run the main function
|
|
main()
|
|
# close sim app
|
|
simulation_app.close()
|