Files
mindbot/scripts/skrl/play.py
2025-11-13 17:37:07 +08:00

251 lines
9.1 KiB
Python

# Copyright (c) 2022-2025, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""
Script to play a checkpoint of an RL agent from skrl.
Visit the skrl documentation (https://skrl.readthedocs.io) to see the examples structured in
a more user-friendly way.
"""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from isaaclab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Play a checkpoint of an RL agent from skrl.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument(
"--disable_fabric", action="store_true", default=False, help="Disable fabric and use USD I/O operations."
)
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument(
"--agent",
type=str,
default=None,
help=(
"Name of the RL agent configuration entry point. Defaults to None, in which case the argument "
"--algorithm is used to determine the default agent configuration entry point."
),
)
parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.")
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
parser.add_argument(
"--use_pretrained_checkpoint",
action="store_true",
help="Use the pre-trained checkpoint from Nucleus.",
)
parser.add_argument(
"--ml_framework",
type=str,
default="torch",
choices=["torch", "jax", "jax-numpy"],
help="The ML framework used for training the skrl agent.",
)
parser.add_argument(
"--algorithm",
type=str,
default="PPO",
choices=["AMP", "PPO", "IPPO", "MAPPO"],
help="The RL algorithm used for training the skrl agent.",
)
parser.add_argument("--real-time", action="store_true", default=False, help="Run in real-time, if possible.")
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import os
import random
import time
import torch
import skrl
from packaging import version
# check for minimum supported skrl version
SKRL_VERSION = "1.4.3"
if version.parse(skrl.__version__) < version.parse(SKRL_VERSION):
skrl.logger.error(
f"Unsupported skrl version: {skrl.__version__}. "
f"Install supported version using 'pip install skrl>={SKRL_VERSION}'"
)
exit()
if args_cli.ml_framework.startswith("torch"):
from skrl.utils.runner.torch import Runner
elif args_cli.ml_framework.startswith("jax"):
from skrl.utils.runner.jax import Runner
from isaaclab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from isaaclab.utils.dict import print_dict
from isaaclab.utils.pretrained_checkpoint import get_published_pretrained_checkpoint
from isaaclab_rl.skrl import SkrlVecEnvWrapper
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils import get_checkpoint_path
from isaaclab_tasks.utils.hydra import hydra_task_config
import mindbot.tasks # noqa: F401
# config shortcuts
if args_cli.agent is None:
algorithm = args_cli.algorithm.lower()
agent_cfg_entry_point = "skrl_cfg_entry_point" if algorithm in ["ppo"] else f"skrl_{algorithm}_cfg_entry_point"
else:
agent_cfg_entry_point = args_cli.agent
algorithm = agent_cfg_entry_point.split("_cfg")[0].split("skrl_")[-1].lower()
@hydra_task_config(args_cli.task, agent_cfg_entry_point)
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, experiment_cfg: dict):
"""Play with skrl agent."""
# grab task name for checkpoint path
task_name = args_cli.task.split(":")[-1]
train_task_name = task_name.replace("-Play", "")
# override configurations with non-hydra CLI arguments
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# configure the ML framework into the global skrl variable
if args_cli.ml_framework.startswith("jax"):
skrl.config.jax.backend = "jax" if args_cli.ml_framework == "jax" else "numpy"
# randomly sample a seed if seed = -1
if args_cli.seed == -1:
args_cli.seed = random.randint(0, 10000)
# set the agent and environment seed from command line
# note: certain randomization occur in the environment initialization so we set the seed here
experiment_cfg["seed"] = args_cli.seed if args_cli.seed is not None else experiment_cfg["seed"]
env_cfg.seed = experiment_cfg["seed"]
# specify directory for logging experiments (load checkpoint)
log_root_path = os.path.join("logs", "skrl", experiment_cfg["agent"]["experiment"]["directory"])
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Loading experiment from directory: {log_root_path}")
# get checkpoint path
if args_cli.use_pretrained_checkpoint:
resume_path = get_published_pretrained_checkpoint("skrl", train_task_name)
if not resume_path:
print("[INFO] Unfortunately a pre-trained checkpoint is currently unavailable for this task.")
return
elif args_cli.checkpoint:
resume_path = os.path.abspath(args_cli.checkpoint)
else:
resume_path = get_checkpoint_path(
log_root_path, run_dir=f".*_{algorithm}_{args_cli.ml_framework}", other_dirs=["checkpoints"]
)
log_dir = os.path.dirname(os.path.dirname(resume_path))
# set the log directory for the environment (works for all environment types)
env_cfg.log_dir = log_dir
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv) and algorithm in ["ppo"]:
env = multi_agent_to_single_agent(env)
# get environment (step) dt for real-time evaluation
try:
dt = env.step_dt
except AttributeError:
dt = env.unwrapped.step_dt
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_dir, "videos", "play"),
"step_trigger": lambda step: step == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
# wrap around environment for skrl
env = SkrlVecEnvWrapper(env, ml_framework=args_cli.ml_framework) # same as: `wrap_env(env, wrapper="auto")`
# configure and instantiate the skrl runner
# https://skrl.readthedocs.io/en/latest/api/utils/runner.html
experiment_cfg["trainer"]["close_environment_at_exit"] = False
experiment_cfg["agent"]["experiment"]["write_interval"] = 0 # don't log to TensorBoard
experiment_cfg["agent"]["experiment"]["checkpoint_interval"] = 0 # don't generate checkpoints
runner = Runner(env, experiment_cfg)
print(f"[INFO] Loading model checkpoint from: {resume_path}")
runner.agent.load(resume_path)
# set agent to evaluation mode
runner.agent.set_running_mode("eval")
# reset environment
obs, _ = env.reset()
timestep = 0
# simulate environment
while simulation_app.is_running():
start_time = time.time()
# run everything in inference mode
with torch.inference_mode():
# agent stepping
outputs = runner.agent.act(obs, timestep=0, timesteps=0)
# - multi-agent (deterministic) actions
if hasattr(env, "possible_agents"):
actions = {a: outputs[-1][a].get("mean_actions", outputs[0][a]) for a in env.possible_agents}
# - single-agent (deterministic) actions
else:
actions = outputs[-1].get("mean_actions", outputs[0])
# env stepping
obs, _, _, _, _ = env.step(actions)
if args_cli.video:
timestep += 1
# exit the play loop after recording one video
if timestep == args_cli.video_length:
break
# time delay for real-time evaluation
sleep_time = dt - (time.time() - start_time)
if args_cli.real_time and sleep_time > 0:
time.sleep(sleep_time)
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()