Files
mindbot/scripts/rl_games/train.py
2026-01-13 10:44:14 +08:00

262 lines
11 KiB
Python

# Copyright (c) 2022-2026, The Isaac Lab Project Developers (https://github.com/isaac-sim/IsaacLab/blob/main/CONTRIBUTORS.md).
# All rights reserved.
#
# SPDX-License-Identifier: BSD-3-Clause
"""Script to train RL agent with RL-Games."""
"""Launch Isaac Sim Simulator first."""
import argparse
import sys
from distutils.util import strtobool
from isaaclab.app import AppLauncher
# add argparse arguments
parser = argparse.ArgumentParser(description="Train an RL agent with RL-Games.")
parser.add_argument("--video", action="store_true", default=False, help="Record videos during training.")
parser.add_argument("--video_length", type=int, default=200, help="Length of the recorded video (in steps).")
parser.add_argument("--video_interval", type=int, default=2000, help="Interval between video recordings (in steps).")
parser.add_argument("--num_envs", type=int, default=None, help="Number of environments to simulate.")
parser.add_argument("--task", type=str, default=None, help="Name of the task.")
parser.add_argument(
"--agent", type=str, default="rl_games_cfg_entry_point", help="Name of the RL agent configuration entry point."
)
parser.add_argument("--seed", type=int, default=None, help="Seed used for the environment")
parser.add_argument(
"--distributed", action="store_true", default=False, help="Run training with multiple GPUs or nodes."
)
parser.add_argument("--checkpoint", type=str, default=None, help="Path to model checkpoint.")
parser.add_argument("--sigma", type=str, default=None, help="The policy's initial standard deviation.")
parser.add_argument("--max_iterations", type=int, default=None, help="RL Policy training iterations.")
parser.add_argument("--wandb-project-name", type=str, default=None, help="the wandb's project name")
parser.add_argument("--wandb-entity", type=str, default=None, help="the entity (team) of wandb's project")
parser.add_argument("--wandb-name", type=str, default=None, help="the name of wandb's run")
parser.add_argument(
"--track",
type=lambda x: bool(strtobool(x)),
default=False,
nargs="?",
const=True,
help="if toggled, this experiment will be tracked with Weights and Biases",
)
parser.add_argument("--export_io_descriptors", action="store_true", default=False, help="Export IO descriptors.")
parser.add_argument(
"--ray-proc-id", "-rid", type=int, default=None, help="Automatically configured by Ray integration, otherwise None."
)
# append AppLauncher cli args
AppLauncher.add_app_launcher_args(parser)
# parse the arguments
args_cli, hydra_args = parser.parse_known_args()
# always enable cameras to record video
if args_cli.video:
args_cli.enable_cameras = True
# clear out sys.argv for Hydra
sys.argv = [sys.argv[0]] + hydra_args
# launch omniverse app
app_launcher = AppLauncher(args_cli)
simulation_app = app_launcher.app
"""Rest everything follows."""
import gymnasium as gym
import logging
import math
import os
import random
import time
from datetime import datetime
from rl_games.common import env_configurations, vecenv
from rl_games.common.algo_observer import IsaacAlgoObserver
from rl_games.torch_runner import Runner
from isaaclab.envs import (
DirectMARLEnv,
DirectMARLEnvCfg,
DirectRLEnvCfg,
ManagerBasedRLEnvCfg,
multi_agent_to_single_agent,
)
from isaaclab.utils.assets import retrieve_file_path
from isaaclab.utils.dict import print_dict
from isaaclab.utils.io import dump_yaml
from isaaclab_rl.rl_games import MultiObserver, PbtAlgoObserver, RlGamesGpuEnv, RlGamesVecEnvWrapper
import isaaclab_tasks # noqa: F401
from isaaclab_tasks.utils.hydra import hydra_task_config
# import logger
logger = logging.getLogger(__name__)
import mindbot.tasks # noqa: F401
@hydra_task_config(args_cli.task, args_cli.agent)
def main(env_cfg: ManagerBasedRLEnvCfg | DirectRLEnvCfg | DirectMARLEnvCfg, agent_cfg: dict):
"""Train with RL-Games agent."""
# override configurations with non-hydra CLI arguments
env_cfg.scene.num_envs = args_cli.num_envs if args_cli.num_envs is not None else env_cfg.scene.num_envs
env_cfg.sim.device = args_cli.device if args_cli.device is not None else env_cfg.sim.device
# check for invalid combination of CPU device with distributed training
if args_cli.distributed and args_cli.device is not None and "cpu" in args_cli.device:
raise ValueError(
"Distributed training is not supported when using CPU device. "
"Please use GPU device (e.g., --device cuda) for distributed training."
)
# randomly sample a seed if seed = -1
if args_cli.seed == -1:
args_cli.seed = random.randint(0, 10000)
agent_cfg["params"]["seed"] = args_cli.seed if args_cli.seed is not None else agent_cfg["params"]["seed"]
agent_cfg["params"]["config"]["max_epochs"] = (
args_cli.max_iterations if args_cli.max_iterations is not None else agent_cfg["params"]["config"]["max_epochs"]
)
if args_cli.checkpoint is not None:
resume_path = retrieve_file_path(args_cli.checkpoint)
agent_cfg["params"]["load_checkpoint"] = True
agent_cfg["params"]["load_path"] = resume_path
print(f"[INFO]: Loading model checkpoint from: {agent_cfg['params']['load_path']}")
train_sigma = float(args_cli.sigma) if args_cli.sigma is not None else None
# multi-gpu training config
if args_cli.distributed:
agent_cfg["params"]["seed"] += app_launcher.global_rank
agent_cfg["params"]["config"]["device"] = f"cuda:{app_launcher.local_rank}"
agent_cfg["params"]["config"]["device_name"] = f"cuda:{app_launcher.local_rank}"
agent_cfg["params"]["config"]["multi_gpu"] = True
# update env config device
env_cfg.sim.device = f"cuda:{app_launcher.local_rank}"
# set the environment seed (after multi-gpu config for updated rank from agent seed)
# note: certain randomizations occur in the environment initialization so we set the seed here
env_cfg.seed = agent_cfg["params"]["seed"]
# specify directory for logging experiments
config_name = agent_cfg["params"]["config"]["name"]
log_root_path = os.path.join("logs", "rl_games", config_name)
if "pbt" in agent_cfg and agent_cfg["pbt"]["directory"] != ".":
log_root_path = os.path.join(agent_cfg["pbt"]["directory"], log_root_path)
else:
log_root_path = os.path.abspath(log_root_path)
print(f"[INFO] Logging experiment in directory: {log_root_path}")
# specify directory for logging runs
log_dir = agent_cfg["params"]["config"].get("full_experiment_name", datetime.now().strftime("%Y-%m-%d_%H-%M-%S"))
# set directory into agent config
# logging directory path: <train_dir>/<full_experiment_name>
agent_cfg["params"]["config"]["train_dir"] = log_root_path
agent_cfg["params"]["config"]["full_experiment_name"] = log_dir
wandb_project = config_name if args_cli.wandb_project_name is None else args_cli.wandb_project_name
experiment_name = log_dir if args_cli.wandb_name is None else args_cli.wandb_name
# dump the configuration into log-directory
dump_yaml(os.path.join(log_root_path, log_dir, "params", "env.yaml"), env_cfg)
dump_yaml(os.path.join(log_root_path, log_dir, "params", "agent.yaml"), agent_cfg)
print(f"Exact experiment name requested from command line: {os.path.join(log_root_path, log_dir)}")
# read configurations about the agent-training
rl_device = agent_cfg["params"]["config"]["device"]
clip_obs = agent_cfg["params"]["env"].get("clip_observations", math.inf)
clip_actions = agent_cfg["params"]["env"].get("clip_actions", math.inf)
obs_groups = agent_cfg["params"]["env"].get("obs_groups")
concate_obs_groups = agent_cfg["params"]["env"].get("concate_obs_groups", True)
# set the IO descriptors export flag if requested
if isinstance(env_cfg, ManagerBasedRLEnvCfg):
env_cfg.export_io_descriptors = args_cli.export_io_descriptors
else:
logger.warning(
"IO descriptors are only supported for manager based RL environments. No IO descriptors will be exported."
)
# set the log directory for the environment (works for all environment types)
env_cfg.log_dir = os.path.join(log_root_path, log_dir)
# create isaac environment
env = gym.make(args_cli.task, cfg=env_cfg, render_mode="rgb_array" if args_cli.video else None)
# convert to single-agent instance if required by the RL algorithm
if isinstance(env.unwrapped, DirectMARLEnv):
env = multi_agent_to_single_agent(env)
# wrap for video recording
if args_cli.video:
video_kwargs = {
"video_folder": os.path.join(log_root_path, log_dir, "videos", "train"),
"step_trigger": lambda step: step % args_cli.video_interval == 0,
"video_length": args_cli.video_length,
"disable_logger": True,
}
print("[INFO] Recording videos during training.")
print_dict(video_kwargs, nesting=4)
env = gym.wrappers.RecordVideo(env, **video_kwargs)
start_time = time.time()
# wrap around environment for rl-games
env = RlGamesVecEnvWrapper(env, rl_device, clip_obs, clip_actions, obs_groups, concate_obs_groups)
# register the environment to rl-games registry
# note: in agents configuration: environment name must be "rlgpu"
vecenv.register(
"IsaacRlgWrapper", lambda config_name, num_actors, **kwargs: RlGamesGpuEnv(config_name, num_actors, **kwargs)
)
env_configurations.register("rlgpu", {"vecenv_type": "IsaacRlgWrapper", "env_creator": lambda **kwargs: env})
# set number of actors into agent config
agent_cfg["params"]["config"]["num_actors"] = env.unwrapped.num_envs
# create runner from rl-games
if "pbt" in agent_cfg and agent_cfg["pbt"]["enabled"]:
observers = MultiObserver([IsaacAlgoObserver(), PbtAlgoObserver(agent_cfg, args_cli)])
runner = Runner(observers)
else:
runner = Runner(IsaacAlgoObserver())
runner.load(agent_cfg)
# reset the agent and env
runner.reset()
# train the agent
global_rank = int(os.getenv("RANK", "0"))
if args_cli.track and global_rank == 0:
if args_cli.wandb_entity is None:
raise ValueError("Weights and Biases entity must be specified for tracking.")
import wandb
wandb.init(
project=wandb_project,
entity=args_cli.wandb_entity,
name=experiment_name,
sync_tensorboard=True,
monitor_gym=True,
save_code=True,
)
if not wandb.run.resumed:
wandb.config.update({"env_cfg": env_cfg.to_dict()})
wandb.config.update({"agent_cfg": agent_cfg})
if args_cli.checkpoint is not None:
runner.run({"train": True, "play": False, "sigma": train_sigma, "checkpoint": resume_path})
else:
runner.run({"train": True, "play": False, "sigma": train_sigma})
print(f"Training time: {round(time.time() - start_time, 2)} seconds")
# close the simulator
env.close()
if __name__ == "__main__":
# run the main function
main()
# close sim app
simulation_app.close()