ver Dec27th
merged zdy into main
This commit is contained in:
@@ -79,6 +79,7 @@ class DesktopEnv(gym.Env):
|
||||
self.metric: Metric = getattr(metrics, self.evaluator["func"])
|
||||
self.result_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["result"]["type"]))
|
||||
self.expected_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["expected"]["type"]))
|
||||
self.metric_options: Dict[str, Any] = self.evaluator.get("options", {})
|
||||
|
||||
# Initialize emulator and controller
|
||||
print("Initializing...")
|
||||
@@ -165,6 +166,7 @@ class DesktopEnv(gym.Env):
|
||||
self.metric: Metric = getattr(metrics, self.evaluator["func"])
|
||||
self.result_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["result"]["type"]))
|
||||
self.expected_getter: Getter = getattr(getters, "get_{:}".format(self.evaluator["expected"]["type"]))
|
||||
self.metric_options = self.evaluator.get("options", {})
|
||||
|
||||
self.setup_controller.reset_cache_dir(self.cache_dir)
|
||||
|
||||
@@ -237,7 +239,7 @@ class DesktopEnv(gym.Env):
|
||||
|
||||
result = self.result_getter(self, self.evaluator["result"])
|
||||
expected = self.expected_getter(self, self.evaluator["expected"])
|
||||
metric: float = self.metric(result, expected)
|
||||
metric: float = self.metric(result, expected, **self.metric_options)
|
||||
|
||||
return metric
|
||||
|
||||
|
||||
@@ -1,14 +1,10 @@
|
||||
import pandas as pd
|
||||
import zipfile
|
||||
import lxml.etree
|
||||
import lxml.cssselect
|
||||
from lxml.etree import _Element
|
||||
import xmltodict
|
||||
#import pylightxl
|
||||
import openpyxl
|
||||
from openpyxl import Workbook
|
||||
#from openpyxl import Workbook
|
||||
from openpyxl.worksheet.worksheet import Worksheet
|
||||
from openpyxl.chart._chart import ChartBase
|
||||
|
||||
from utils import load_charts, load_sparklines
|
||||
|
||||
from typing import Dict, List
|
||||
from typing import Any
|
||||
@@ -20,104 +16,35 @@ def compare_table(actual, expected):
|
||||
# Compare the DataFrames
|
||||
return 1 if df1.equals(df2) else 0
|
||||
|
||||
_xlsx_namespaces = [ ("x14", "http://schemas.microsoft.com/office/spreadsheetml/2009/9/main")
|
||||
, ("xm", "http://schemas.microsoft.com/office/excel/2006/main")
|
||||
]
|
||||
_xlsx_ns_mapping = dict(_xlsx_namespaces)
|
||||
_xlsx_ns_imapping = dict(map(lambda itm: (itm[1], itm[0]), _xlsx_namespaces))
|
||||
_sparklines_selector = lxml.cssselect.CSSSelector("x14|sparkline", namespaces=_xlsx_ns_mapping)
|
||||
#print(_sparklines_selector.css)
|
||||
def _load_sparklines(xlsx_file: str) -> Dict[str, str]:
|
||||
"""
|
||||
This function modifies data_frame in-place
|
||||
|
||||
Args:
|
||||
xlsx_file (str): path to xlsx
|
||||
|
||||
Returns:
|
||||
List[Dict[str, str]]: sparkline definitions in form of
|
||||
{
|
||||
"F3": "Sheet1!C3:E3"
|
||||
}
|
||||
"""
|
||||
|
||||
# read xlsx
|
||||
with zipfile.ZipFile(xlsx_file, "r") as z_f:
|
||||
with z_f.open("xl/worksheets/sheet1.xml") as f:
|
||||
sheet1: _Element = lxml.etree.fromstring(f.read())
|
||||
sparklines: List[_Element] = _sparklines_selector(sheet1)
|
||||
|
||||
sparklines_dict: Dict[str, str] = {}
|
||||
for sp_l in sparklines:
|
||||
sparkline_xml: str = lxml.etree.tostring(sp_l, encoding="unicode")
|
||||
sparkline: Dict[str, Dict[str, str]] = xmltodict.parse( sparkline_xml
|
||||
, process_namespaces=True
|
||||
, namespaces=_xlsx_ns_imapping
|
||||
)
|
||||
sparklines_dict[sparkline["x14:sparkline"]["xm:sqref"]] = sparkline["x14:sparkline"]["xm:f"]
|
||||
return sparklines_dict
|
||||
|
||||
def compare_with_sparklines(actual: str, expected: str) -> float:
|
||||
df1 = pd.read_excel(actual)
|
||||
df2 = pd.read_excel(expected)
|
||||
normal_content_metric: bool = df1.equals(df2)
|
||||
print("Normal Contents Metric: {:}".format(normal_content_metric))
|
||||
|
||||
sp1 = _load_sparklines(actual)
|
||||
sp2 = _load_sparklines(expected)
|
||||
sp1 = load_sparklines(actual)
|
||||
sp2 = load_sparklines(expected)
|
||||
sparkline_metric: bool = sp1 == sp2
|
||||
print("Sparkline Metric: {:}".format(sparkline_metric))
|
||||
|
||||
return float(normal_content_metric and sparkline_metric)
|
||||
|
||||
def _load_charts(xlsx_file: str) -> Dict[str, Any]:
|
||||
def compare_with_charts(actual: str, expected: str, **options) -> float:
|
||||
"""
|
||||
Args:
|
||||
xlsx_file (str): path to xlsx
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: information of charts
|
||||
actual (str): path to result xlsx
|
||||
expected (str): path to gold xlsx
|
||||
options (Dict[str, List[str]]): dict like {"chart_props": list of str}
|
||||
giving the concerned chart properties
|
||||
"""
|
||||
|
||||
workbook: Workbook = openpyxl.load_workbook(filename=xlsx_file)
|
||||
worksheet: Worksheet = workbook.active
|
||||
charts: List[ChartBase] = worksheet._charts
|
||||
|
||||
chart_set: Dict[str, Any] = {}
|
||||
for ch in charts:
|
||||
series: List[str] = []
|
||||
for ser in ch.series:
|
||||
value_num = ser.val.numRef.f\
|
||||
if hasattr(ser.val, "numRef") and hasattr(ser.val.numRef, "f")\
|
||||
else ""
|
||||
value_str = ser.val.strRef.f\
|
||||
if hasattr(ser.val, "strRef") and hasattr(ser.val.strRef, "f")\
|
||||
else ""
|
||||
categ_num = ser.cat.numRef.f\
|
||||
if hasattr(ser.cat, "numRef") and hasattr(ser.cat.numRef, "f")\
|
||||
else ""
|
||||
categ_str = ser.cat.strRef.f\
|
||||
if hasattr(ser.cat, "strRef") and hasattr(ser.cat.strRef, "f")\
|
||||
else ""
|
||||
series.append( "{:},{:},{:},{:}".format( value_num, value_str
|
||||
, categ_num, categ_str
|
||||
)
|
||||
)
|
||||
series: str = ";".join(series)
|
||||
|
||||
# TODO: maybe more aspects, like chart type
|
||||
info: Dict[str, Any] = {}
|
||||
chart_set[series] = info
|
||||
return chart_set
|
||||
|
||||
def compare_with_charts(actual: str, expected: str) -> float:
|
||||
df1 = pd.read_excel(actual)
|
||||
df2 = pd.read_excel(expected)
|
||||
normal_content_metric: bool = df1.equals(df2)
|
||||
print("Normal Contents Metric: {:}".format(normal_content_metric))
|
||||
|
||||
charts1 = _load_charts(actual)
|
||||
charts2 = _load_charts(expected)
|
||||
charts1 = load_charts(actual, **options)
|
||||
charts2 = load_charts(expected, **options)
|
||||
chart_metric: bool = charts1==charts2
|
||||
print("Chart Metric: {:}".format(chart_metric))
|
||||
|
||||
@@ -202,25 +129,5 @@ if __name__ == '__main__':
|
||||
#print(check_sheet_list(path1, rule))
|
||||
|
||||
path1 = "../../../../../任务数据/LibreOffice Calc/Create_column_charts_using_statistics_gold.xlsx"
|
||||
#workbook1: Workbook = openpyxl.load_workbook(filename=path1)
|
||||
#worksheet1: Worksheet = workbook1.active
|
||||
#charts: List[ChartBase] = worksheet1._charts
|
||||
#print(len(charts))
|
||||
#print(type(charts[0]))
|
||||
#
|
||||
#print(len(charts[0].series))
|
||||
#print(type(charts[0].series[0]))
|
||||
#print(type(charts[0].series[0].val))
|
||||
##print(charts[0].series[0].val)
|
||||
#print(charts[0].series[0].val.numRef.f)
|
||||
#
|
||||
#print(type(charts[0].series[0].cat))
|
||||
##print(charts[0].series[0].cat)
|
||||
#print(charts[0].series[0].cat.numRef)
|
||||
#print(charts[0].series[0].cat.strRef)
|
||||
#print(charts[0].series[0].cat.strRef.f)
|
||||
#
|
||||
#df1 = pd.read_excel(path1)
|
||||
#print(df1)
|
||||
path2 = "../../../../../任务数据/LibreOffice Calc/Create_column_charts_using_statistics_gold2.xlsx"
|
||||
print(compare_with_charts(path1, path2))
|
||||
print(compare_with_charts(path1, path2, chart_props=["type", "direction"]))
|
||||
|
||||
161
desktop_env/evaluators/metrics/utils.py
Normal file
161
desktop_env/evaluators/metrics/utils.py
Normal file
@@ -0,0 +1,161 @@
|
||||
import zipfile
|
||||
import lxml.etree
|
||||
import lxml.cssselect
|
||||
from lxml.etree import _Element
|
||||
import xmltodict
|
||||
import openpyxl
|
||||
from openpyxl import Workbook
|
||||
from openpyxl.worksheet.worksheet import Worksheet
|
||||
from openpyxl.chart._chart import ChartBase
|
||||
|
||||
from typing import Dict, List, Set
|
||||
from typing import Any
|
||||
|
||||
_xlsx_namespaces = [ ("x14", "http://schemas.microsoft.com/office/spreadsheetml/2009/9/main")
|
||||
, ("xm", "http://schemas.microsoft.com/office/excel/2006/main")
|
||||
]
|
||||
_xlsx_ns_mapping = dict(_xlsx_namespaces)
|
||||
_xlsx_ns_imapping = dict(map(lambda itm: (itm[1], itm[0]), _xlsx_namespaces))
|
||||
_sparklines_selector = lxml.cssselect.CSSSelector("x14|sparkline", namespaces=_xlsx_ns_mapping)
|
||||
#print(_sparklines_selector.css)
|
||||
def load_sparklines(xlsx_file: str) -> Dict[str, str]:
|
||||
"""
|
||||
This function modifies data_frame in-place
|
||||
|
||||
Args:
|
||||
xlsx_file (str): path to xlsx
|
||||
|
||||
Returns:
|
||||
List[Dict[str, str]]: sparkline definitions in form of
|
||||
{
|
||||
"F3": "Sheet1!C3:E3"
|
||||
}
|
||||
"""
|
||||
|
||||
# read xlsx
|
||||
with zipfile.ZipFile(xlsx_file, "r") as z_f:
|
||||
with z_f.open("xl/worksheets/sheet1.xml") as f:
|
||||
sheet1: _Element = lxml.etree.fromstring(f.read())
|
||||
sparklines: List[_Element] = _sparklines_selector(sheet1)
|
||||
|
||||
sparklines_dict: Dict[str, str] = {}
|
||||
for sp_l in sparklines:
|
||||
sparkline_xml: str = lxml.etree.tostring(sp_l, encoding="unicode")
|
||||
sparkline: Dict[str, Dict[str, str]] = xmltodict.parse( sparkline_xml
|
||||
, process_namespaces=True
|
||||
, namespaces=_xlsx_ns_imapping
|
||||
)
|
||||
sparklines_dict[sparkline["x14:sparkline"]["xm:sqref"]] = sparkline["x14:sparkline"]["xm:f"]
|
||||
return sparklines_dict
|
||||
|
||||
# Available Chart Properties:
|
||||
# title: str
|
||||
# anchor: ["oneCell" | "twoCell" | "absolute", col0, row0, col1, row1]
|
||||
# width: number
|
||||
# height: number
|
||||
# type: "scatterChart" | "lineChart" | "barChart"
|
||||
# direction: "bar" (hori) | "col" (vert)
|
||||
# xtitle, ytitle, ztitle: str
|
||||
def load_charts(xlsx_file: str, **options) -> Dict[str, Any]:
|
||||
"""
|
||||
Args:
|
||||
xlsx_file (str): path to xlsx
|
||||
options (Dict[str, List[str]]): dict like {"chart_props": list of str}
|
||||
giving the concerned chart properties
|
||||
|
||||
Returns:
|
||||
Dict[str, Any]: information of charts
|
||||
"""
|
||||
|
||||
workbook: Workbook = openpyxl.load_workbook(filename=xlsx_file)
|
||||
worksheet: Worksheet = workbook.active
|
||||
charts: List[ChartBase] = worksheet._charts
|
||||
|
||||
chart_set: Dict[str, Any] = {}
|
||||
chart_props: Set[str] = set(options["chart_props"]) if "chart_props" in options else set()
|
||||
for ch in charts:
|
||||
series: List[str] = []
|
||||
for ser in ch.series:
|
||||
value_num = ser.val.numRef.f\
|
||||
if hasattr(ser.val, "numRef") and hasattr(ser.val.numRef, "f")\
|
||||
else ""
|
||||
value_str = ser.val.strRef.f\
|
||||
if hasattr(ser.val, "strRef") and hasattr(ser.val.strRef, "f")\
|
||||
else ""
|
||||
categ_num = ser.cat.numRef.f\
|
||||
if hasattr(ser.cat, "numRef") and hasattr(ser.cat.numRef, "f")\
|
||||
else ""
|
||||
categ_str = ser.cat.strRef.f\
|
||||
if hasattr(ser.cat, "strRef") and hasattr(ser.cat.strRef, "f")\
|
||||
else ""
|
||||
series.append( "{:},{:},{:},{:}".format( value_num, value_str
|
||||
, categ_num, categ_str
|
||||
)
|
||||
)
|
||||
series: str = ";".join(series)
|
||||
|
||||
# TODO: maybe more aspects, like chart type
|
||||
info: Dict[str, Any] = {}
|
||||
|
||||
if "title" in chart_props:
|
||||
info["title"] = ch.title.tx.rich.p[0].r[0].t
|
||||
if "anchor" in chart_props:
|
||||
info["anchor"] = [ ch.anchor.editAs
|
||||
, ch.anchor._from.col, ch.anchor.to.row
|
||||
, ch.anchor.to.col, ch.anchor.to.row
|
||||
]
|
||||
if "width" in chart_props:
|
||||
info["width"] = ch.width
|
||||
if "height" in chart_props:
|
||||
info["height"] = ch.height
|
||||
if "type" in chart_props:
|
||||
info["type"] = ch.tagname
|
||||
if "direction" in chart_props:
|
||||
info["direction"] = ch.barDir
|
||||
|
||||
if "xtitle" in chart_props:
|
||||
info["xtitle"] = ch.x_axis.title.tx.rich.p[0].r[0].t
|
||||
if "ytitle" in chart_props:
|
||||
info["ytitle"] = ch.y_axis.title.tx.rich.p[0].r[0].t
|
||||
if "ztitle" in chart_props:
|
||||
info["ztitle"] = ch.z_axis.title.tx.rich.p[0].r[0].t
|
||||
chart_set[series] = info
|
||||
return chart_set
|
||||
|
||||
if __name__ == "__main__":
|
||||
path1 = "../../../../../任务数据/LibreOffice Calc/Create_column_charts_using_statistics_gold_line_scatter.xlsx"
|
||||
workbook1: Workbook = openpyxl.load_workbook(filename=path1)
|
||||
worksheet1: Worksheet = workbook1.active
|
||||
charts: List[ChartBase] = worksheet1._charts
|
||||
#print(len(charts))
|
||||
#print(type(charts[0]))
|
||||
#
|
||||
#print(len(charts[0].series))
|
||||
#print(type(charts[0].series[0]))
|
||||
#print(type(charts[0].series[0].val))
|
||||
##print(charts[0].series[0].val)
|
||||
#print(charts[0].series[0].val.numRef.f)
|
||||
#
|
||||
#print(type(charts[0].series[0].cat))
|
||||
##print(charts[0].series[0].cat)
|
||||
#print(charts[0].series[0].cat.numRef)
|
||||
#print(charts[0].series[0].cat.strRef)
|
||||
#print(charts[0].series[0].cat.strRef.f)
|
||||
|
||||
#print(type(charts[0].title.tx.strRef))
|
||||
#print(type(charts[0].title.tx.rich))
|
||||
#print(type(charts[0].title.txPr))
|
||||
#print(len(charts[0].title.tx.rich.p))
|
||||
#print(len(charts[0].title.tx.rich.p[0].r))
|
||||
#print(type(charts[0].title.tx.rich.p[0].r[0]))
|
||||
#print(type(charts[0].title.tx.rich.p[0].r[0].t))
|
||||
#print(charts[0].title.tx.rich.p[0].r[0].t)
|
||||
|
||||
#print(type(charts[0].anchor))
|
||||
#print(charts[0].anchor.editAs)
|
||||
#print(charts[0].anchor._from.col, charts[0].anchor.to.row)
|
||||
#print(charts[0].anchor.to.col, charts[0].anchor.to.row)
|
||||
|
||||
#df1 = pd.read_excel(path1)
|
||||
#print(df1)
|
||||
print(load_charts(path1, chart_props=["title", "xtitle", "ytitle", "type"]))
|
||||
Reference in New Issue
Block a user