refactor on exp code
This commit is contained in:
734
mm_agents/agent.py
Normal file
734
mm_agents/agent.py
Normal file
@@ -0,0 +1,734 @@
|
||||
import base64
|
||||
import json
|
||||
import logging
|
||||
import os
|
||||
import re
|
||||
import time
|
||||
import uuid
|
||||
from http import HTTPStatus
|
||||
from io import BytesIO
|
||||
from typing import Dict, List
|
||||
import xml.etree.ElementTree as ET
|
||||
|
||||
import backoff
|
||||
import dashscope
|
||||
import google.generativeai as genai
|
||||
import openai
|
||||
import requests
|
||||
from PIL import Image
|
||||
from openai import (
|
||||
APIConnectionError,
|
||||
APIError,
|
||||
RateLimitError
|
||||
)
|
||||
|
||||
from mm_agents.accessibility_tree_wrap.heuristic_retrieve import find_leaf_nodes, filter_nodes, draw_bounding_boxes
|
||||
from mm_agents.prompts import SYS_PROMPT_IN_SCREENSHOT_OUT_CODE, SYS_PROMPT_IN_SCREENSHOT_OUT_ACTION, \
|
||||
SYS_PROMPT_IN_A11Y_OUT_CODE, SYS_PROMPT_IN_A11Y_OUT_ACTION, \
|
||||
SYS_PROMPT_IN_BOTH_OUT_CODE, SYS_PROMPT_IN_BOTH_OUT_ACTION, \
|
||||
SYS_PROMPT_IN_SOM_A11Y_OUT_TAG, \
|
||||
SYS_PROMPT_SEEACT, ACTION_DESCRIPTION_PROMPT_SEEACT, ACTION_GROUNDING_PROMPT_SEEACT
|
||||
|
||||
import logging
|
||||
# todo: cross-check with visualwebarena
|
||||
|
||||
logger = logging.getLogger("desktopenv.agent")
|
||||
|
||||
|
||||
# Function to encode the image
|
||||
def encode_image(image_path):
|
||||
with open(image_path, "rb") as image_file:
|
||||
return base64.b64encode(image_file.read()).decode('utf-8')
|
||||
|
||||
|
||||
def linearize_accessibility_tree(accessibility_tree):
|
||||
#leaf_nodes = find_leaf_nodes(accessibility_tree)
|
||||
filtered_nodes = filter_nodes(ET.fromstring(accessibility_tree))
|
||||
|
||||
linearized_accessibility_tree = "tag\tname\ttext\tposition\tsize\n"
|
||||
# Linearize the accessibility tree nodes into a table format
|
||||
|
||||
for node in filtered_nodes:
|
||||
linearized_accessibility_tree += node.tag + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('name') + "\t"
|
||||
if node.text:
|
||||
linearized_accessibility_tree += (node.text if '"' not in node.text else '"{:}"'.format(
|
||||
node.text.replace('"', '""'))) + "\t"
|
||||
elif node.get("{uri:deskat:uia.windows.microsoft.org}class", "").endswith("EditWrapper") \
|
||||
and node.get("{uri:deskat:value.at-spi.gnome.org}value"):
|
||||
text: str = node.get("{uri:deskat:value.at-spi.gnome.org}value")
|
||||
linearized_accessibility_tree += (text if '"' not in text else '"{:}"'.format(
|
||||
text.replace('"', '""'))) + "\t"
|
||||
else:
|
||||
linearized_accessibility_tree += '""\t'
|
||||
linearized_accessibility_tree += node.attrib.get(
|
||||
'{uri:deskat:component.at-spi.gnome.org}screencoord', "") + "\t"
|
||||
linearized_accessibility_tree += node.attrib.get('{uri:deskat:component.at-spi.gnome.org}size', "") + "\n"
|
||||
|
||||
return linearized_accessibility_tree
|
||||
|
||||
|
||||
def tag_screenshot(screenshot, accessibility_tree):
|
||||
# Creat a tmp file to store the screenshot in random name
|
||||
uuid_str = str(uuid.uuid4())
|
||||
os.makedirs("tmp/images", exist_ok=True)
|
||||
tagged_screenshot_file_path = os.path.join("tmp/images", uuid_str + ".png")
|
||||
nodes = filter_nodes(find_leaf_nodes(accessibility_tree))
|
||||
# Make tag screenshot
|
||||
marks, drew_nodes = draw_bounding_boxes(nodes, screenshot, tagged_screenshot_file_path)
|
||||
|
||||
return marks, drew_nodes, tagged_screenshot_file_path
|
||||
|
||||
|
||||
def parse_actions_from_string(input_string):
|
||||
if input_string.strip() in ['WAIT', 'DONE', 'FAIL']:
|
||||
return [input_string.strip()]
|
||||
# Search for a JSON string within the input string
|
||||
actions = []
|
||||
matches = re.findall(r'```json\s+(.*?)\s+```', input_string, re.DOTALL)
|
||||
if matches:
|
||||
# Assuming there's only one match, parse the JSON string into a dictionary
|
||||
try:
|
||||
for match in matches:
|
||||
action_dict = json.loads(match)
|
||||
actions.append(action_dict)
|
||||
return actions
|
||||
except json.JSONDecodeError as e:
|
||||
return f"Failed to parse JSON: {e}"
|
||||
else:
|
||||
matches = re.findall(r'```\s+(.*?)\s+```', input_string, re.DOTALL)
|
||||
if matches:
|
||||
# Assuming there's only one match, parse the JSON string into a dictionary
|
||||
try:
|
||||
for match in matches:
|
||||
action_dict = json.loads(match)
|
||||
actions.append(action_dict)
|
||||
return actions
|
||||
except json.JSONDecodeError as e:
|
||||
return f"Failed to parse JSON: {e}"
|
||||
else:
|
||||
try:
|
||||
action_dict = json.loads(input_string)
|
||||
return [action_dict]
|
||||
except json.JSONDecodeError:
|
||||
raise ValueError("Invalid response format: " + input_string)
|
||||
|
||||
|
||||
def parse_code_from_string(input_string):
|
||||
input_string = input_string.replace(";", "\n")
|
||||
if input_string.strip() in ['WAIT', 'DONE', 'FAIL']:
|
||||
return [input_string.strip()]
|
||||
|
||||
# This regular expression will match both ```code``` and ```python code```
|
||||
# and capture the `code` part. It uses a non-greedy match for the content inside.
|
||||
pattern = r"```(?:\w+\s+)?(.*?)```"
|
||||
# Find all non-overlapping matches in the string
|
||||
matches = re.findall(pattern, input_string, re.DOTALL)
|
||||
|
||||
# The regex above captures the content inside the triple backticks.
|
||||
# The `re.DOTALL` flag allows the dot `.` to match newline characters as well,
|
||||
# so the code inside backticks can span multiple lines.
|
||||
|
||||
# matches now contains all the captured code snippets
|
||||
|
||||
codes = []
|
||||
|
||||
for match in matches:
|
||||
match = match.strip()
|
||||
commands = ['WAIT', 'DONE', 'FAIL'] # fixme: updates this part when we have more commands
|
||||
|
||||
if match in commands:
|
||||
codes.append(match.strip())
|
||||
elif match.split('\n')[-1] in commands:
|
||||
if len(match.split('\n')) > 1:
|
||||
codes.append("\n".join(match.split('\n')[:-1]))
|
||||
codes.append(match.split('\n')[-1])
|
||||
else:
|
||||
codes.append(match)
|
||||
|
||||
return codes
|
||||
|
||||
|
||||
def parse_code_from_som_string(input_string, masks):
|
||||
# parse the output string by masks
|
||||
tag_vars = ""
|
||||
for i, mask in enumerate(masks):
|
||||
x, y, w, h = mask
|
||||
tag_vars += "tag_" + str(i + 1) + "=" + "({}, {})".format(int(x + w // 2), int(y + h // 2))
|
||||
tag_vars += "\n"
|
||||
|
||||
actions = parse_code_from_string(input_string)
|
||||
|
||||
for i, action in enumerate(actions):
|
||||
if action.strip() in ['WAIT', 'DONE', 'FAIL']:
|
||||
pass
|
||||
else:
|
||||
action = tag_vars + action
|
||||
actions[i] = action
|
||||
|
||||
return actions
|
||||
|
||||
|
||||
class PromptAgent:
|
||||
def __init__(
|
||||
self,
|
||||
api_key,
|
||||
instruction,
|
||||
model="gpt-4-vision-preview",
|
||||
max_tokens=500,
|
||||
action_space="computer_13",
|
||||
exp="screenshot_a11y_tree"
|
||||
# exp can be in ["screenshot", "a11y_tree", "screenshot_a11y_tree", "som", "seeact"]
|
||||
):
|
||||
|
||||
self.instruction = instruction
|
||||
self.model = model
|
||||
self.max_tokens = max_tokens
|
||||
self.action_space = action_space
|
||||
self.exp = exp
|
||||
self.max_trajectory_length = 3
|
||||
|
||||
self.headers = {
|
||||
"Content-Type": "application/json",
|
||||
"Authorization": f"Bearer {api_key}"
|
||||
}
|
||||
|
||||
self.thoughts = []
|
||||
self.actions = []
|
||||
self.observations = []
|
||||
|
||||
if exp == "screenshot":
|
||||
if action_space == "computer_13":
|
||||
self.system_message = SYS_PROMPT_IN_SCREENSHOT_OUT_ACTION
|
||||
elif action_space == "pyautogui":
|
||||
self.system_message = SYS_PROMPT_IN_SCREENSHOT_OUT_CODE
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif exp == "a11y_tree":
|
||||
if action_space == "computer_13":
|
||||
self.system_message = SYS_PROMPT_IN_A11Y_OUT_ACTION
|
||||
elif action_space == "pyautogui":
|
||||
self.system_message = SYS_PROMPT_IN_A11Y_OUT_CODE
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif exp == "both":
|
||||
if action_space == "computer_13":
|
||||
self.system_message = SYS_PROMPT_IN_BOTH_OUT_ACTION
|
||||
elif action_space == "pyautogui":
|
||||
self.system_message = SYS_PROMPT_IN_BOTH_OUT_CODE
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif exp == "som":
|
||||
if action_space == "computer_13":
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif action_space == "pyautogui":
|
||||
self.system_message = SYS_PROMPT_IN_SOM_A11Y_OUT_TAG
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif exp == "seeact":
|
||||
if action_space == "computer_13":
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
elif action_space == "pyautogui":
|
||||
self.system_message = SYS_PROMPT_SEEACT
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + action_space)
|
||||
else:
|
||||
raise ValueError("Invalid experiment type: " + exp)
|
||||
|
||||
self.system_message = self.system_message + "\nYou are asked to complete the following task: {}".format(
|
||||
self.instruction)
|
||||
|
||||
def predict(self, obs: Dict) -> List:
|
||||
"""
|
||||
Predict the next action(s) based on the current observation.
|
||||
"""
|
||||
|
||||
# Prepare the payload for the API call
|
||||
messages = []
|
||||
masks = None
|
||||
|
||||
messages.append({
|
||||
"role": "system",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": self.system_message
|
||||
},
|
||||
]
|
||||
})
|
||||
|
||||
# Append trajectory
|
||||
assert len(self.observations) == len(self.actions) and len(self.actions) == len(self.thoughts) \
|
||||
, "The number of observations and actions should be the same."
|
||||
|
||||
if len(self.observations) > self.max_trajectory_length:
|
||||
_observations = self.observations[-self.max_trajectory_length:]
|
||||
_actions = self.actions[-self.max_trajectory_length:]
|
||||
_thoughts = self.thoughts[-self.max_trajectory_length:]
|
||||
else:
|
||||
_observations = self.observations
|
||||
_actions = self.actions
|
||||
_thoughts = self.thoughts
|
||||
|
||||
for previous_obs, previous_action, previous_thought in zip(_observations, _actions, _thoughts):
|
||||
|
||||
# {{{1
|
||||
if self.exp == "both":
|
||||
_screenshot = previous_obs["screenshot"]
|
||||
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
|
||||
logger.debug("LINEAR AT: %s", _linearized_accessibility_tree)
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
_linearized_accessibility_tree)
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{_screenshot}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp in ["som", "seeact"]:
|
||||
_screenshot = previous_obs["screenshot"]
|
||||
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
|
||||
logger.debug("LINEAR AT: %s", _linearized_accessibility_tree)
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the tagged screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
_linearized_accessibility_tree)
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{_screenshot}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp == "screenshot":
|
||||
_screenshot = previous_obs["screenshot"]
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the screenshot as below. What's the next step that you will do to help with the task?"
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{_screenshot}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp == "a11y_tree":
|
||||
_linearized_accessibility_tree = previous_obs["accessibility_tree"]
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
_linearized_accessibility_tree)
|
||||
}
|
||||
]
|
||||
})
|
||||
else:
|
||||
raise ValueError("Invalid experiment type: " + self.exp) # 1}}}
|
||||
|
||||
messages.append({
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": previous_thought.strip() if len(previous_thought) > 0 else "No valid action"
|
||||
},
|
||||
]
|
||||
})
|
||||
|
||||
# {{{1
|
||||
if self.exp in ["screenshot", "both"]:
|
||||
base64_image = encode_image(obs["screenshot"])
|
||||
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
|
||||
|
||||
if self.exp == "both":
|
||||
self.observations.append({
|
||||
"screenshot": base64_image,
|
||||
"accessibility_tree": linearized_accessibility_tree
|
||||
})
|
||||
else:
|
||||
self.observations.append({
|
||||
"screenshot": base64_image,
|
||||
"accessibility_tree": None
|
||||
})
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the screenshot as below. What's the next step that you will do to help with the task?"
|
||||
if self.exp == "screenshot"
|
||||
else "Given the screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
linearized_accessibility_tree)
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{base64_image}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp == "a11y_tree":
|
||||
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
|
||||
|
||||
self.observations.append({
|
||||
"screenshot": None,
|
||||
"accessibility_tree": linearized_accessibility_tree
|
||||
})
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
linearized_accessibility_tree)
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp == "som":
|
||||
# Add som to the screenshot
|
||||
masks, drew_nodes, tagged_screenshot = tag_screenshot(obs["screenshot"], obs["accessibility_tree"])
|
||||
base64_image = encode_image(tagged_screenshot)
|
||||
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
|
||||
|
||||
self.observations.append({
|
||||
"screenshot": base64_image,
|
||||
"accessibility_tree": linearized_accessibility_tree
|
||||
})
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "Given the tagged screenshot and info from accessibility tree as below:\n{}\nWhat's the next step that you will do to help with the task?".format(
|
||||
linearized_accessibility_tree)
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{base64_image}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
elif self.exp == "seeact":
|
||||
# Add som to the screenshot
|
||||
masks, drew_nodes, tagged_screenshot = tag_screenshot(obs["screenshot"], obs["accessibility_tree"])
|
||||
base64_image = encode_image(tagged_screenshot)
|
||||
linearized_accessibility_tree = linearize_accessibility_tree(accessibility_tree=obs["accessibility_tree"])
|
||||
|
||||
self.observations.append({
|
||||
"screenshot": base64_image,
|
||||
"accessibility_tree": linearized_accessibility_tree
|
||||
})
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": ACTION_DESCRIPTION_PROMPT_SEEACT.format(linearized_accessibility_tree)
|
||||
},
|
||||
{
|
||||
"type": "image_url",
|
||||
"image_url": {
|
||||
"url": f"data:image/png;base64,{base64_image}",
|
||||
"detail": "high"
|
||||
}
|
||||
}
|
||||
]
|
||||
})
|
||||
else:
|
||||
raise ValueError("Invalid experiment type: " + self.exp) # 1}}}
|
||||
|
||||
with open("messages.json", "w") as f:
|
||||
f.write(json.dumps(messages, indent=4))
|
||||
|
||||
|
||||
response = self.call_llm({
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"max_tokens": self.max_tokens
|
||||
})
|
||||
|
||||
logger.debug("RESPONSE: %s", response)
|
||||
|
||||
if self.exp == "seeact":
|
||||
messages.append({
|
||||
"role": "assistant",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": response
|
||||
}
|
||||
]
|
||||
})
|
||||
|
||||
messages.append({
|
||||
"role": "user",
|
||||
"content": [
|
||||
{
|
||||
"type": "text",
|
||||
"text": "{}\n\nWhat's the next step that you will do to help with the task?".format(
|
||||
ACTION_GROUNDING_PROMPT_SEEACT)
|
||||
}
|
||||
]
|
||||
})
|
||||
|
||||
response = self.call_llm({
|
||||
"model": self.model,
|
||||
"messages": messages,
|
||||
"max_tokens": self.max_tokens
|
||||
})
|
||||
print(response)
|
||||
|
||||
try:
|
||||
actions = self.parse_actions(response, masks)
|
||||
self.thoughts.append(response)
|
||||
except Exception as e:
|
||||
print("Failed to parse action from response", e)
|
||||
actions = None
|
||||
self.thoughts.append("")
|
||||
|
||||
return actions
|
||||
|
||||
@backoff.on_exception(
|
||||
backoff.expo,
|
||||
(Exception),
|
||||
max_tries=10
|
||||
)
|
||||
def call_llm(self, payload):
|
||||
if self.model.startswith("gpt"):
|
||||
logger.info("Generating content with GPT model: %s", self.model)
|
||||
response = requests.post(
|
||||
"https://api.openai.com/v1/chat/completions",
|
||||
headers=self.headers,
|
||||
json=payload
|
||||
)
|
||||
|
||||
if response.status_code != 200:
|
||||
if response.json()['error']['code'] == "context_length_exceeded":
|
||||
print("Context length exceeded. Retrying with a smaller context.")
|
||||
payload["messages"] = payload["messages"][-1:]
|
||||
retry_response = requests.post(
|
||||
"https://api.openai.com/v1/chat/completions",
|
||||
headers=self.headers,
|
||||
json=payload
|
||||
)
|
||||
if retry_response.status_code != 200:
|
||||
print("Failed to call LLM: " + retry_response.text)
|
||||
return ""
|
||||
|
||||
print("Failed to call LLM: " + response.text)
|
||||
time.sleep(5)
|
||||
return ""
|
||||
else:
|
||||
return response.json()['choices'][0]['message']['content']
|
||||
|
||||
elif self.model.startswith("mistral"):
|
||||
print("call mistral")
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
|
||||
misrtal_messages = []
|
||||
|
||||
for i, message in enumerate(messages):
|
||||
mistral_message = {
|
||||
"role": message["role"],
|
||||
"content": []
|
||||
}
|
||||
|
||||
for part in message["content"]:
|
||||
mistral_message['content'] = part['text'] if part['type'] == "text" else None
|
||||
|
||||
misrtal_messages.append(mistral_message)
|
||||
|
||||
# the mistral not support system message in our endpoint, so we concatenate it at the first user message
|
||||
if misrtal_messages[0]['role'] == "system":
|
||||
misrtal_messages[1]['content'] = misrtal_messages[0]['content'] + "\n" + misrtal_messages[1]['content']
|
||||
misrtal_messages.pop(0)
|
||||
|
||||
# openai.api_base = "http://localhost:8000/v1"
|
||||
# openai.api_key = "test"
|
||||
# response = openai.ChatCompletion.create(
|
||||
# messages=misrtal_messages,
|
||||
# model="Mixtral-8x7B-Instruct-v0.1"
|
||||
# )
|
||||
|
||||
from openai import OpenAI
|
||||
TOGETHER_API_KEY = "d011650e7537797148fb6170ec1e0be7ae75160375686fae02277136078e90d2"
|
||||
|
||||
client = OpenAI(api_key=TOGETHER_API_KEY,
|
||||
base_url='https://api.together.xyz',
|
||||
)
|
||||
logger.info("Generating content with Mistral model: %s", self.model)
|
||||
response = client.chat.completions.create(
|
||||
messages=misrtal_messages,
|
||||
model="mistralai/Mixtral-8x7B-Instruct-v0.1",
|
||||
max_tokens=1024
|
||||
)
|
||||
|
||||
try:
|
||||
# return response['choices'][0]['message']['content']
|
||||
return response.choices[0].message.content
|
||||
except Exception as e:
|
||||
print("Failed to call LLM: " + str(e))
|
||||
return ""
|
||||
|
||||
elif self.model.startswith("gemini"):
|
||||
def encoded_img_to_pil_img(data_str):
|
||||
base64_str = data_str.replace("data:image/png;base64,", "")
|
||||
image_data = base64.b64decode(base64_str)
|
||||
image = Image.open(BytesIO(image_data))
|
||||
|
||||
return image
|
||||
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
|
||||
gemini_messages = []
|
||||
for i, message in enumerate(messages):
|
||||
role_mapping = {
|
||||
"assistant": "model",
|
||||
"user": "user",
|
||||
"system": "system"
|
||||
}
|
||||
gemini_message = {
|
||||
"role": role_mapping[message["role"]],
|
||||
"parts": []
|
||||
}
|
||||
assert len(message["content"]) in [1, 2], "One text, or one text with one image"
|
||||
|
||||
# The gemini only support the last image as single image input
|
||||
if i == len(messages) - 1:
|
||||
for part in message["content"]:
|
||||
gemini_message['parts'].append(part['text']) if part['type'] == "text" \
|
||||
else gemini_message['parts'].append(encoded_img_to_pil_img(part['image_url']['url']))
|
||||
else:
|
||||
for part in message["content"]:
|
||||
gemini_message['parts'].append(part['text']) if part['type'] == "text" else None
|
||||
|
||||
gemini_messages.append(gemini_message)
|
||||
|
||||
# the mistral not support system message in our endpoint, so we concatenate it at the first user message
|
||||
if gemini_messages[0]['role'] == "system":
|
||||
gemini_messages[1]['parts'][0] = gemini_messages[0]['parts'][0] + "\n" + gemini_messages[1]['parts'][0]
|
||||
gemini_messages.pop(0)
|
||||
|
||||
# since the gemini-pro-vision donnot support multi-turn message
|
||||
if self.model == "gemini-pro-vision":
|
||||
message_history_str = ""
|
||||
for message in gemini_messages:
|
||||
message_history_str += "<|" + message['role'] + "|>\n" + message['parts'][0] + "\n"
|
||||
gemini_messages = [{"role": "user", "parts": [message_history_str, gemini_messages[-1]['parts'][1]]}]
|
||||
|
||||
print(gemini_messages)
|
||||
api_key = os.environ.get("GENAI_API_KEY")
|
||||
assert api_key is not None, "Please set the GENAI_API_KEY environment variable"
|
||||
genai.configure(api_key=api_key)
|
||||
logger.info("Generating content with Gemini model: %s", self.model)
|
||||
response = genai.GenerativeModel(self.model).generate_content(
|
||||
gemini_messages,
|
||||
generation_config={
|
||||
"max_output_tokens": max_tokens
|
||||
}
|
||||
)
|
||||
|
||||
try:
|
||||
return response.text
|
||||
except Exception as e:
|
||||
return ""
|
||||
elif self.model.startswith("qwen"):
|
||||
messages = payload["messages"]
|
||||
max_tokens = payload["max_tokens"]
|
||||
|
||||
qwen_messages = []
|
||||
|
||||
for i, message in enumerate(messages):
|
||||
qwen_message = {
|
||||
"role": message["role"],
|
||||
"content": []
|
||||
}
|
||||
assert len(message["content"]) in [1, 2], "One text, or one text with one image"
|
||||
for part in message["content"]:
|
||||
qwen_message['content'].append({"image": part['image_url']['url']}) if part['type'] == "image_url" else None
|
||||
qwen_message['content'].append({"text": part['text']}) if part['type'] == "text" else None
|
||||
|
||||
qwen_messages.append(qwen_message)
|
||||
|
||||
response = dashscope.MultiModalConversation.call(model='qwen-vl-plus',
|
||||
messages=messages)
|
||||
# The response status_code is HTTPStatus.OK indicate success,
|
||||
# otherwise indicate request is failed, you can get error code
|
||||
# and message from code and message.
|
||||
if response.status_code == HTTPStatus.OK:
|
||||
try:
|
||||
return response.json()['output']['choices'][0]['message']['content']
|
||||
except Exception as e:
|
||||
return ""
|
||||
else:
|
||||
print(response.code) # The error code.
|
||||
print(response.message) # The error message.
|
||||
return ""
|
||||
|
||||
else:
|
||||
raise ValueError("Invalid model: " + self.model)
|
||||
|
||||
def parse_actions(self, response: str, masks=None):
|
||||
|
||||
if self.exp in ["screenshot", "a11y_tree", "both"]:
|
||||
# parse from the response
|
||||
if self.action_space == "computer_13":
|
||||
actions = parse_actions_from_string(response)
|
||||
elif self.action_space == "pyautogui":
|
||||
actions = parse_code_from_string(response)
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + self.action_space)
|
||||
|
||||
self.actions.append(actions)
|
||||
|
||||
return actions
|
||||
elif self.exp in ["som", "seeact"]:
|
||||
# parse from the response
|
||||
if self.action_space == "computer_13":
|
||||
raise ValueError("Invalid action space: " + self.action_space)
|
||||
elif self.action_space == "pyautogui":
|
||||
actions = parse_code_from_som_string(response, masks)
|
||||
else:
|
||||
raise ValueError("Invalid action space: " + self.action_space)
|
||||
|
||||
self.actions.append(actions)
|
||||
|
||||
return actions
|
||||
Reference in New Issue
Block a user