Add DuckTrack as initial annotation tool; Initial multimodal test

This commit is contained in:
Timothyxxx
2023-11-27 00:34:57 +08:00
parent 8c0525c20e
commit 8272e93953
53 changed files with 1705 additions and 0 deletions

View File

@@ -0,0 +1,48 @@
import glob
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
from scipy.stats import sem, t
def calculate_confidence_interval(data, confidence=0.95):
n = len(data)
m = np.mean(data)
std_err = sem(data)
h = std_err * t.ppf((1 + confidence) / 2, n - 1)
return m, m-h, m+h
runs = glob.glob("run*.txt")
TOTAL_EVENTS = 22509
percent_delays = []
all_delays = []
for run in runs:
with open(run, "r") as f:
delays = [float(line.split()[3]) for line in f if float(line.split()[3]) > 0] # consider only positive delays
percent_delays.append((len(delays) / TOTAL_EVENTS) * 100)
all_delays.extend(delays)
average_percent_delays = np.mean(percent_delays)
confidence_interval_percent_delays = calculate_confidence_interval(percent_delays)
print(f"Average percentage of delayed events across all runs: {average_percent_delays:.2f}%")
print(f"95% Confidence interval: ({confidence_interval_percent_delays[1]:.2f}%, {confidence_interval_percent_delays[2]:.2f}%)")
if all_delays:
mean_delay = np.mean(all_delays)
confidence_interval_delays = calculate_confidence_interval(all_delays)
print(f"Mean delay time: {mean_delay:.2f}")
print(f"95% Confidence interval for delay time: ({confidence_interval_delays[1]:.2f}, {confidence_interval_delays[2]:.2f})")
else:
print("No delay data available for calculation.")
sns.histplot(all_delays, bins=30, kde=False)
plt.xlabel('Delay Time (ms)')
plt.ylabel('Frequency')
plt.yscale('log')
plt.title('Histogram of Delay Times (macOS)')
plt.savefig('delays.png', dpi=300)
plt.show()

View File

@@ -0,0 +1,110 @@
import glob
import os
import cv2
import matplotlib.pyplot as plt
import numpy as np
import scipy.stats as stats
from skimage.metrics import structural_similarity as ssim
from tqdm import tqdm
# use this: https://sketch.io
def calculate_rmse(imageA, imageB):
err = np.sum((imageA - imageB) ** 2)
err /= float(imageA.shape[0] * imageA.shape[1])
return np.sqrt(err)
def compare_images(ground_truth_path, sample_paths):
results = []
gt_image = cv2.imread(ground_truth_path, cv2.IMREAD_GRAYSCALE)
if gt_image is None:
raise ValueError("Ground truth image could not be read. Please check the file path.")
gt_image = gt_image.astype("float") / 255.0
for path in tqdm(sample_paths):
sample_image = cv2.imread(path, cv2.IMREAD_GRAYSCALE)
if sample_image is None:
print(f"WARNING: Sample image at path {path} could not be read. Skipping this image.")
continue
sample_image = sample_image.astype("float") / 255.0
rmse_value = calculate_rmse(gt_image, sample_image)
ssim_value, _ = ssim(gt_image, sample_image, full=True, data_range=1) # Corrected line
diff_mask = cv2.absdiff(gt_image, sample_image)
# plt.imshow(diff_mask * 255, cmap='gray')
# plt.title(f'Difference Mask for {os.path.basename(path)}\nRMSE: {rmse_value:.5f} - SSIM: {ssim_value:.5f}')
# plt.show()
results.append({
'path': path,
'rmse': rmse_value,
'ssim': ssim_value,
'diff_mask': diff_mask
})
return results
ground_truth = 'ground_truth.png'
sample_images = glob.glob("samples/*.png")
results = compare_images(ground_truth, sample_images)
for res in results:
print(f"Image: {res['path']} - RMSE: {res['rmse']} - SSIM: {res['ssim']}")
def calculate_confidence_interval(data, confidence_level=0.95):
mean = np.mean(data)
sem = stats.sem(data)
df = len(data) - 1
me = sem * stats.t.ppf((1 + confidence_level) / 2, df)
return mean - me, mean + me
rmse_values = [res['rmse'] for res in results]
ssim_values = [res['ssim'] for res in results]
rmse_mean = np.mean(rmse_values)
rmse_median = np.median(rmse_values)
rmse_stdev = np.std(rmse_values, ddof=1)
ssim_mean = np.mean(ssim_values)
ssim_median = np.median(ssim_values)
ssim_stdev = np.std(ssim_values, ddof=1)
rmse_ci = calculate_confidence_interval(rmse_values)
ssim_ci = calculate_confidence_interval(ssim_values)
print(f"\nRMSE - Mean: {rmse_mean}, Median: {rmse_median}, Std Dev: {rmse_stdev}, 95% CI: {rmse_ci}")
print(f"SSIM - Mean: {ssim_mean}, Median: {ssim_median}, Std Dev: {ssim_stdev}, 95% CI: {ssim_ci}")
print(f"RMSE: {rmse_mean} ± {rmse_ci[1] - rmse_mean}")
print(f"SSIM: {ssim_mean} ± {ssim_ci[1] - ssim_mean}")
def save_average_diff_map(results, save_path='average_diff_map.png'):
if not results:
print("No results available to create an average diff map.")
return
avg_diff_map = None
for res in results:
if avg_diff_map is None:
avg_diff_map = np.zeros_like(res['diff_mask'])
avg_diff_map += res['diff_mask']
avg_diff_map /= len(results)
avg_diff_map = (avg_diff_map * 255).astype(np.uint8)
cv2.imwrite(save_path, avg_diff_map)
# Usage
save_average_diff_map(results)

View File

@@ -0,0 +1,4 @@
success = 10
total = 10
print(success / total)

View File

@@ -0,0 +1,48 @@
import csv
import time
import numpy as np
from tqdm import tqdm
def check_sleep(duration, sleep_function):
start = time.perf_counter()
sleep_function(duration)
end = time.perf_counter()
elapsed = end - start
return abs(elapsed - duration)
def busy_sleep(duration):
end_time = time.perf_counter() + duration
while time.perf_counter() < end_time:
pass
def measure_accuracy(sleep_function, durations, iterations=100):
average_errors = []
for duration in tqdm(durations):
errors = [check_sleep(duration, sleep_function) for _ in range(iterations)]
average_error = np.mean(errors)
average_errors.append(average_error)
return average_errors
durations = np.arange(0.001, 0.101, 0.001) # From 1ms to 100ms in 1ms increments
iterations = 100
sleep_errors = measure_accuracy(time.sleep, durations, iterations)
busy_sleep_errors = measure_accuracy(busy_sleep, durations, iterations)
def save_to_csv(filename, durations, sleep_errors, busy_sleep_errors):
with open(filename, 'w', newline='') as csvfile:
fieldnames = ['duration', 'sleep_error', 'busy_sleep_error']
writer = csv.DictWriter(csvfile, fieldnames=fieldnames)
writer.writeheader()
for duration, sleep_error, busy_sleep_error in zip(durations, sleep_errors, busy_sleep_errors):
writer.writerow({
'duration': duration,
'sleep_error': sleep_error,
'busy_sleep_error': busy_sleep_error
})
print("Data saved to", filename)
save_to_csv('sleep_data.csv', durations * 1000, np.array(sleep_errors) * 1000, np.array(busy_sleep_errors) * 1000)

View File

@@ -0,0 +1,33 @@
import csv
import matplotlib.pyplot as plt
def plot_from_csv(filename, save_plot=False):
durations = []
sleep_errors = []
busy_sleep_errors = []
with open(filename, 'r') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
durations.append(float(row['duration']))
sleep_errors.append(float(row['sleep_error']))
busy_sleep_errors.append(float(row['busy_sleep_error']))
plt.figure(figsize=(10, 5))
plt.plot(durations, sleep_errors, label='time.sleep()', marker='o')
plt.plot(durations, busy_sleep_errors, label='busy_sleep()', marker='x')
plt.xlabel('Desired Delay (ms)')
plt.ylabel('Average Error (ms)')
plt.title('Sleep Accuracy: time.sleep() vs Busy-Wait Loop (macOS)')
plt.legend()
plt.grid(True)
if save_plot:
plt.savefig('sleep_accuracy_plot.png', dpi=300)
print("Plot saved as sleep_accuracy_plot.png")
plt.show()
plot_from_csv('sleep_data.csv', save_plot=True)

View File

@@ -0,0 +1,110 @@
import glob
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import scipy.stats as stats
import seaborn as sns
# use this: https://www.estopwatch.net/
def read_file(file_path):
df = pd.read_csv(file_path)
df['Elapsed time'] = pd.to_datetime(df['Elapsed time'], errors='coerce')
return df
def analyze_new_error(run_df, groundtruth_df):
cumulative_errors = run_df['Elapsed time'] - groundtruth_df['Elapsed time']
cumulative_errors_in_seconds = cumulative_errors.dt.total_seconds()
new_errors_in_seconds = cumulative_errors_in_seconds.diff().fillna(cumulative_errors_in_seconds[0])
new_error_points = new_errors_in_seconds[new_errors_in_seconds != 0].index.tolist()
return new_errors_in_seconds[new_error_points]
def calculate_statistics(errors):
if len(errors) == 0:
return {
'mean_error': 0,
'median_error': 0,
'stddev_error': 0,
'rmse_error': 0,
'confidence_interval': (0, 0),
'error_frequency': 0
}
mean_error = np.mean(errors)
median_error = np.median(errors)
stddev_error = np.std(errors)
rmse_error = np.sqrt(np.mean(np.square(errors)))
ci_low, ci_high = stats.t.interval(
confidence=0.95,
df=len(errors) - 1,
loc=mean_error,
scale=stats.sem(errors) if len(errors) > 1 else 0
)
return {
'mean_error': mean_error,
'median_error': median_error,
'stddev_error': stddev_error,
'rmse_error': rmse_error,
'confidence_interval': (ci_low, ci_high),
}
def main():
groundtruth_file = 'groundtruth.csv'
run_files = glob.glob('runs/*.csv')
groundtruth_df = read_file(groundtruth_file)
run_dfs = {f'run{i+1}': read_file(file) for i, file in enumerate(run_files)}
total_errors = []
total_points = 0
all_errors = []
for run, df in run_dfs.items():
errors = analyze_new_error(df, groundtruth_df)
total_errors.extend(errors)
all_errors.extend(errors)
total_points += len(df)
results = calculate_statistics(errors)
error_frequency = len(errors) / len(df)
print(f"Results for {run}:")
print(f"Mean New Error: {results['mean_error']:.5f} seconds")
print(f"Median New Error: {results['median_error']:.5f} seconds")
print(f"Standard Deviation of New Error: {results['stddev_error']:.5f} seconds")
print(f"RMSE of New Error: {results['rmse_error']:.5f} seconds")
print(f"95% Confidence Interval of New Error: ({results['confidence_interval'][0]:.5f}, {results['confidence_interval'][1]:.5f}) seconds")
print(f"New Error Frequency: {error_frequency*100:.5f} %")
print('-----------------------------------------')
total_results = calculate_statistics(total_errors)
total_error_frequency = len(total_errors) / total_points
print("Total Statistics:")
print(f"Mean New Error: {total_results['mean_error']:.5f} seconds")
print(f"Median New Error: {total_results['median_error']:.5f} seconds")
print(f"Standard Deviation of New Error: {total_results['stddev_error']:.5f} seconds")
print(f"RMSE of New Error: {total_results['rmse_error']:.5f} seconds")
print(f"95% Confidence Interval of New Error: ({total_results['confidence_interval'][0]:.5f}, {total_results['confidence_interval'][1]:.5f}) seconds")
print(f"New Error Frequency: {total_error_frequency*100:.5f} %")
# do plus minus
print(f"New Error: {total_results['mean_error']:.5f} ± {total_results['confidence_interval'][1] - total_results['mean_error']:.5f} seconds")
plt.figure(figsize=(10, 5))
sns.histplot(all_errors, bins=12, kde=False)
plt.title('Distribution of Newly Introduced Errors (macOS)')
plt.xlabel('Error Duration (seconds)')
plt.ylabel('Frequency')
plt.savefig('error_dist', dpi=300)
plt.show()
if __name__ == "__main__":
main()