diff --git a/mm_agents/agent.py b/mm_agents/agent.py index 744ee9c..cf140d8 100644 --- a/mm_agents/agent.py +++ b/mm_agents/agent.py @@ -549,55 +549,101 @@ class PromptAgent: return response.json()['content'][0]['text'] - # elif self.model.startswith("mistral"): - # print("Call mistral") - # messages = payload["messages"] - # max_tokens = payload["max_tokens"] - # - # misrtal_messages = [] - # - # for i, message in enumerate(messages): - # mistral_message = { - # "role": message["role"], - # "content": [] - # } - # - # for part in message["content"]: - # mistral_message['content'] = part['text'] if part['type'] == "text" else None - # - # misrtal_messages.append(mistral_message) - # - # # the mistral not support system message in our endpoint, so we concatenate it at the first user message - # if misrtal_messages[0]['role'] == "system": - # misrtal_messages[1]['content'] = misrtal_messages[0]['content'] + "\n" + misrtal_messages[1]['content'] - # misrtal_messages.pop(0) - # - # # openai.api_base = "http://localhost:8000/v1" - # # openai.api_key = "test" - # # response = openai.ChatCompletion.create( - # # messages=misrtal_messages, - # # model="Mixtral-8x7B-Instruct-v0.1" - # # ) - # - # from openai import OpenAI - # TOGETHER_API_KEY = "d011650e7537797148fb6170ec1e0be7ae75160375686fae02277136078e90d2" - # - # client = OpenAI(api_key=TOGETHER_API_KEY, - # base_url='https://api.together.xyz', - # ) - # logger.info("Generating content with Mistral model: %s", self.model) - # response = client.chat.completions.create( - # messages=misrtal_messages, - # model="mistralai/Mixtral-8x7B-Instruct-v0.1", - # max_tokens=1024 - # ) - # - # try: - # # return response['choices'][0]['message']['content'] - # return response.choices[0].message.content - # except Exception as e: - # print("Failed to call LLM: " + str(e)) - # return "" + elif self.model.startswith("mistral"): + print("Call mistral") + messages = payload["messages"] + max_tokens = payload["max_tokens"] + top_p = payload["top_p"] + temperature = payload["temperature"] + + misrtal_messages = [] + + for i, message in enumerate(messages): + mistral_message = { + "role": message["role"], + "content": "" + } + + for part in message["content"]: + mistral_message['content'] = part['text'] if part['type'] == "text" else "" + + + misrtal_messages.append(mistral_message) + + + # openai.api_base = "http://localhost:8000/v1" + # response = openai.ChatCompletion.create( + # messages=misrtal_messages, + # model="Mixtral-8x7B-Instruct-v0.1" + # ) + + from openai import OpenAI + + client = OpenAI(api_key=os.environ["TOGETHER_API_KEY"], + base_url='https://api.together.xyz', + ) + logger.info("Generating content with Mistral model: %s", self.model) + + response = client.chat.completions.create( + messages=misrtal_messages, + model=self.model, + max_tokens=max_tokens + ) + + try: + return response.choices[0].message.content + except Exception as e: + print("Failed to call LLM: " + str(e)) + return "" + + elif self.model.startswith("THUDM"): + # THUDM/cogagent-chat-hf + print("Call CogAgent") + messages = payload["messages"] + max_tokens = payload["max_tokens"] + top_p = payload["top_p"] + temperature = payload["temperature"] + + cog_messages = [] + + for i, message in enumerate(messages): + cog_message = { + "role": message["role"], + "content": [] + } + + for part in message["content"]: + if part['type'] == "image_url": + cog_message['content'].append({"type": "image_url", "image_url": {"url": part['image_url']['url'] } }) + + if part['type'] == "text": + cog_message['content'].append({"type": "text", "text": part['text']}) + + cog_messages.append(cog_message) + + # the cogagent not support system message in our endpoint, so we concatenate it at the first user message + if cog_messages[0]['role'] == "system": + cog_system_message_item = cog_messages[0]['content'][0] + cog_messages[1]['content'].insert(0, cog_system_message_item) + cog_messages.pop(0) + + payload = { + "model": self.model, + "max_tokens": max_tokens, + "messages": cog_messages + } + + base_url = "http://127.0.0.1:8000" + + response = requests.post(f"{base_url}/v1/chat/completions", json=payload, stream=False) + if response.status_code == 200: + decoded_line = response.json() + content = decoded_line.get("choices", [{}])[0].get("message", "").get("content", "") + return content + else: + print("Failed to call LLM: ", response.status_code) + return "" + elif self.model.startswith("gemini"): def encoded_img_to_pil_img(data_str):