import os import datetime import json import logging from wrapt_timeout_decorator import * logger = logging.getLogger("desktopenv.experiment") # Open the JSON file with open("./settings.json", "r") as file: # Load the JSON data from the file data = json.load(file) time_limit = data["time_limit"] @timeout(time_limit, use_signals=False) def run_single_example(agent, env, example, max_steps, instruction, args, example_result_dir, scores): agent.reset() obs = env.reset(task_config=example) done = False step_idx = 0 env.controller.start_recording() while not done and step_idx < max_steps: actions = agent.predict( instruction, obs ) for action in actions: # Capture the timestamp before executing the action action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S") logger.info("Step %d: %s", step_idx + 1, action) obs, reward, done, info = env.step(action, args.sleep_after_execution) logger.info("Reward: %.2f", reward) logger.info("Done: %s", done) logger.info("Info: %s", info) # Save screenshot and trajectory information with open(os.path.join(example_result_dir, f"step_{step_idx + 1}_{action_timestamp}.png"), "wb") as _f: with open(obs['screenshot'], "rb") as __f: screenshot = __f.read() _f.write(screenshot) with open(os.path.join(example_result_dir, "traj.jsonl"), "a") as f: f.write(json.dumps({ "step_num": step_idx + 1, "action_timestamp": action_timestamp, "action": action, "reward": reward, "done": done, "info": info, "screenshot_file": f"step_{step_idx + 1}_{action_timestamp}.png" })) f.write("\n") if done: logger.info("The episode is done.") break step_idx += 1 result = env.evaluate() logger.info("Result: %.2f", result) scores.append(result) with open(os.path.join(example_result_dir, "result.txt"), "w", encoding="utf-8") as f: f.write(f"{result}\n") env.controller.end_recording(os.path.join(example_result_dir, "recording.mp4"))