import json from desktop_env.envs.desktop_env import DesktopEnv def human_agent(): """ Runs the Gym environment with human input. """ with open("evaluation_examples/examples/37608790-6147-45d0-9f20-1137bb35703d.json", "r") as f: example = json.load(f) env = DesktopEnv( # path_to_vm=r"""C:\Users\tianbaox\Downloads\Windows 10 x64\Windows 10 x64.vmx""", path_to_vm=r"""C:\Users\tianbaox\Documents\Virtual Machines\Win10\Win10.vmx""", # path_to_vm="/home/yuri/vmware/Ubuntu 64-bit/Ubuntu 64-bit.vmx", action_space="computer_13", snapshot_path="base_setup2", # config=example["config"], ) # reset the environment to certain snapshot observation = env.reset() done = False trajectory = [ { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } }, {"action_type": "CLICK", "parameters": {"button": "right", "num_clicks": 1}}, { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } }, { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } }, { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } }, { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } }, { "action_type": "MOVE_TO", "parameters": { "x": 754, "y": 1057 } } ] for i in range(len(trajectory)): # action = get_human_action() # action = { # "action_type": 0, # "click_type": 3, # } print(trajectory[i]) observation, reward, done, info = env.step(trajectory[i], pause=5) print("Observation:", observation) print("Reward:", reward) print("Info:", info) print("================================\n") if done: print("The episode is done.") break env.close() print("Environment closed.") if __name__ == "__main__": human_agent()