import datetime import json import logging import os import sys from desktop_env.envs.desktop_env import DesktopEnv from mm_agents.gpt_4v_agent import GPT4v_Agent # Logger Configs {{{ # logger = logging.getLogger() logger.setLevel(logging.DEBUG) datetime_str: str = datetime.datetime.now().strftime("%Y%m%d@%H%M%S") file_handler = logging.FileHandler(os.path.join("logs", "normal-{:}.log".format(datetime_str)), encoding="utf-8") debug_handler = logging.FileHandler(os.path.join("logs", "debug-{:}.log".format(datetime_str)), encoding="utf-8") stdout_handler = logging.StreamHandler(sys.stdout) sdebug_handler = logging.FileHandler(os.path.join("logs", "sdebug-{:}.log".format(datetime_str)), encoding="utf-8") file_handler.setLevel(logging.INFO) debug_handler.setLevel(logging.DEBUG) stdout_handler.setLevel(logging.INFO) sdebug_handler.setLevel(logging.DEBUG) formatter = logging.Formatter( fmt="\x1b[1;33m[%(asctime)s \x1b[31m%(levelname)s \x1b[32m%(module)s/%(lineno)d-%(processName)s\x1b[1;33m] \x1b[0m%(message)s") file_handler.setFormatter(formatter) debug_handler.setFormatter(formatter) stdout_handler.setFormatter(formatter) sdebug_handler.setFormatter(formatter) stdout_handler.addFilter(logging.Filter("desktopenv")) sdebug_handler.addFilter(logging.Filter("desktopenv")) logger.addHandler(file_handler) logger.addHandler(debug_handler) logger.addHandler(stdout_handler) logger.addHandler(sdebug_handler) # }}} Logger Configs # logger = logging.getLogger("desktopenv.experiment") PATH_TO_VM = r"C:\Users\tianbaox\Documents\Virtual Machines\Ubuntu\Ubuntu.vmx" def run_one_example(example, agent, max_steps=10, example_trajectory_dir="exp_trajectory", recording=True): trajectory_recording_path = os.path.join(example_trajectory_dir, "trajectory.json") env = DesktopEnv( path_to_vm=PATH_TO_VM, action_space=agent.action_space, task_config=example ) # reset the environment to certain snapshot observation = env.reset() done = False step_num = 0 if recording: # send a request to the server to start recording env.controller.start_recording() while not done and step_num < max_steps: with open("accessibility_tree.xml", "w", encoding="utf-8") as f: f.write(observation["accessibility_tree"]) actions = agent.predict(observation) step_num += 1 for action in actions: # Capture the timestamp before executing the action action_timestamp = datetime.datetime.now().strftime("%Y%m%d@%H%M%S") logger.info("Step %d: %s", step_num, action) observation, reward, done, info = env.step(action) logger.info("Reward: %.2f", reward) logger.info("Done: %s", done) logger.info("Info: %s", info) # Save screenshot and trajectory information with open(os.path.join(example_trajectory_dir, f"step_{step_num}_{action_timestamp}.png"), "wb") as _f: with open(observation['screenshot'], "rb") as __f: screenshot = __f.read() _f.write(screenshot) with open(trajectory_recording_path, "a") as f: f.write(json.dumps({ "step_num": step_num, "action_timestamp": action_timestamp, "action": action, "reward": reward, "done": done, "info": info, "screenshot_file": f"step_{step_num}_{action_timestamp}.png" })) f.write("\n") if done: logger.info("The episode is done.") break if recording: # send a request to the server to stop recording env.controller.end_recording(os.path.join(example_trajectory_dir, "recording.mp4")) result = env.evaluate() logger.info("Result: %.2f", result) # env.close() logger.info("Environment closed.") if __name__ == "__main__": action_space = "pyautogui" example_class = "chrome" example_id = "7b6c7e24-c58a-49fc-a5bb-d57b80e5b4c3" gpt4_model = "gpt-4-vision-preview" gemini_model = "gemini-pro-vision" logger.info("Running example %s/%s", example_class, example_id) logger.info("Using model %s", gpt4_model) # logger.info("Using model %s", gemini_model) with open(f"evaluation_examples/examples/{example_class}/{example_id}.json", "r") as f: example = json.load(f) example["snapshot"] = "exp_setup4" api_key = os.environ.get("OPENAI_API_KEY") agent = GPT4v_Agent(api_key=api_key, model=gpt4_model, instruction=example['instruction'], action_space=action_space, exp="a11y_tree") # api_key = os.environ.get("GENAI_API_KEY") # agent = GeminiPro_Agent(api_key=api_key, model=gemini_model, instruction=example['instruction'], action_space=action_space, exp="a11y_tree") root_trajectory_dir = "exp_trajectory" example_trajectory_dir = os.path.join(root_trajectory_dir, "a11y_tree", example_class, gpt4_model, example_id) # example_trajectory_dir = os.path.join(root_trajectory_dir, "a11y_tree", example_class, gemini_model, example_id) os.makedirs(example_trajectory_dir, exist_ok=True) run_one_example(example, agent, 15, example_trajectory_dir)