# Conflicts: # desktop_env/controllers/setup.py # desktop_env/evaluators/metrics/utils.py
216 lines
7.8 KiB
Python
216 lines
7.8 KiB
Python
import logging
|
|
import zipfile
|
|
from typing import Any
|
|
from typing import Dict, List, Set
|
|
from urllib.parse import urlparse, urlunparse
|
|
|
|
import lxml.cssselect
|
|
import lxml.etree
|
|
import openpyxl
|
|
import xmltodict
|
|
from lxml.etree import _Element
|
|
from openpyxl import Workbook
|
|
from openpyxl.chart._chart import ChartBase
|
|
from openpyxl.worksheet.worksheet import Worksheet
|
|
|
|
logger = logging.getLogger("desktopenv.metrics.utils")
|
|
|
|
_xlsx_namespaces = [("x14", "http://schemas.microsoft.com/office/spreadsheetml/2009/9/main")
|
|
, ("xm", "http://schemas.microsoft.com/office/excel/2006/main")
|
|
]
|
|
_xlsx_ns_mapping = dict(_xlsx_namespaces)
|
|
_xlsx_ns_imapping = dict(map(lambda itm: (itm[1], itm[0]), _xlsx_namespaces))
|
|
_sparklines_selector = lxml.cssselect.CSSSelector("x14|sparkline", namespaces=_xlsx_ns_mapping)
|
|
|
|
|
|
# print(_sparklines_selector.css)
|
|
def load_sparklines(xlsx_file: str) -> Dict[str, str]:
|
|
"""
|
|
This function modifies data_frame in-place
|
|
|
|
Args:
|
|
xlsx_file (str): path to xlsx
|
|
|
|
Returns:
|
|
List[Dict[str, str]]: sparkline definitions in form of
|
|
{
|
|
"F3": "Sheet1!C3:E3"
|
|
}
|
|
"""
|
|
|
|
# read xlsx
|
|
with zipfile.ZipFile(xlsx_file, "r") as z_f:
|
|
with z_f.open("xl/worksheets/sheet1.xml") as f:
|
|
sheet1: _Element = lxml.etree.fromstring(f.read())
|
|
sparklines: List[_Element] = _sparklines_selector(sheet1)
|
|
|
|
sparklines_dict: Dict[str, str] = {}
|
|
for sp_l in sparklines:
|
|
sparkline_xml: str = lxml.etree.tostring(sp_l, encoding="unicode")
|
|
sparkline: Dict[str, Dict[str, str]] = xmltodict.parse(sparkline_xml
|
|
, process_namespaces=True
|
|
, namespaces=_xlsx_ns_imapping
|
|
)
|
|
sparklines_dict[sparkline["x14:sparkline"]["xm:sqref"]] = sparkline["x14:sparkline"]["xm:f"]
|
|
return sparklines_dict
|
|
|
|
|
|
# Available Chart Properties:
|
|
# title: str
|
|
# anchor: ["oneCell" | "twoCell" | "absolute", col0, row0, col1, row1]
|
|
# width: number
|
|
# height: number
|
|
# type: "scatterChart" | "lineChart" | "barChart"
|
|
# direction: "bar" (hori) | "col" (vert)
|
|
# xtitle, ytitle, ztitle: str
|
|
def load_charts(xlsx_file: Workbook, **options) -> Dict[str, Any]:
|
|
"""
|
|
Args:
|
|
xlsx_file (Workbook): concerned excel book
|
|
options (Dict[str, List[str]]): dict like {"chart_props": list of str}
|
|
giving the concerned chart properties
|
|
|
|
Returns:
|
|
Dict[str, Any]: information of charts
|
|
"""
|
|
|
|
# workbook: Workbook = openpyxl.load_workbook(filename=xlsx_file)
|
|
worksheet: Worksheet = xlsx_file.active
|
|
charts: List[ChartBase] = worksheet._charts
|
|
|
|
chart_set: Dict[str, Any] = {}
|
|
chart_props: Set[str] = set(options["chart_props"]) if "chart_props" in options else set()
|
|
for ch in charts:
|
|
series: List[str] = []
|
|
for ser in ch.series:
|
|
value_num = ser.val.numRef.f \
|
|
if hasattr(ser.val, "numRef") and hasattr(ser.val.numRef, "f") \
|
|
else ""
|
|
value_str = ser.val.strRef.f \
|
|
if hasattr(ser.val, "strRef") and hasattr(ser.val.strRef, "f") \
|
|
else ""
|
|
categ_num = ser.cat.numRef.f \
|
|
if hasattr(ser.cat, "numRef") and hasattr(ser.cat.numRef, "f") \
|
|
else ""
|
|
categ_str = ser.cat.strRef.f \
|
|
if hasattr(ser.cat, "strRef") and hasattr(ser.cat.strRef, "f") \
|
|
else ""
|
|
series.append("{:},{:},{:},{:}".format(value_num, value_str
|
|
, categ_num, categ_str
|
|
)
|
|
)
|
|
series: str = ";".join(series)
|
|
|
|
# TODO: maybe more aspects, like chart type
|
|
info: Dict[str, Any] = {}
|
|
|
|
if "title" in chart_props:
|
|
info["title"] = ch.title.tx.rich.p[0].r[0].t
|
|
if "anchor" in chart_props:
|
|
info["anchor"] = [ch.anchor.editAs
|
|
, ch.anchor._from.col, ch.anchor.to.row
|
|
, ch.anchor.to.col, ch.anchor.to.row
|
|
]
|
|
if "width" in chart_props:
|
|
info["width"] = ch.width
|
|
if "height" in chart_props:
|
|
info["height"] = ch.height
|
|
if "type" in chart_props:
|
|
info["type"] = ch.tagname
|
|
if "direction" in chart_props:
|
|
info["direction"] = ch.barDir
|
|
|
|
if "xtitle" in chart_props:
|
|
info["xtitle"] = ch.x_axis.title.tx.rich.p[0].r[0].t
|
|
if "ytitle" in chart_props:
|
|
info["ytitle"] = ch.y_axis.title.tx.rich.p[0].r[0].t
|
|
if "ztitle" in chart_props:
|
|
info["ztitle"] = ch.z_axis.title.tx.rich.p[0].r[0].t
|
|
chart_set[series] = info
|
|
return chart_set
|
|
|
|
|
|
def _match_record(pattern: Dict[str, Any], item: Dict[str, Any]) -> bool:
|
|
return all(k in item and item[k] == val for k, val in pattern.items())
|
|
|
|
|
|
def are_lists_equal(list1, list2, comparison_func):
|
|
# First check if both lists have the same length
|
|
if len(list1) != len(list2):
|
|
return False
|
|
|
|
# Now make sure each element in one list has an equal element in the other list
|
|
for item1 in list1:
|
|
# Use the supplied function to test for an equal item
|
|
if not any(comparison_func(item1, item2) for item2 in list2):
|
|
return False
|
|
|
|
# If all items match, the lists are equal
|
|
return True
|
|
|
|
|
|
def compare_urls(url1, url2):
|
|
def normalize_url(url):
|
|
# Parse the URL
|
|
parsed_url = urlparse(url)
|
|
|
|
# If no scheme is present, assume 'http'
|
|
scheme = parsed_url.scheme if parsed_url.scheme else 'http'
|
|
|
|
# Lowercase the scheme and netloc, remove 'www.', and handle trailing slash
|
|
normalized_netloc = parsed_url.netloc.lower().replace("www.", "")
|
|
normalized_path = parsed_url.path if parsed_url.path != '/' else ''
|
|
|
|
# Reassemble the URL with normalized components
|
|
normalized_parsed_url = parsed_url._replace(scheme=scheme.lower(), netloc=normalized_netloc,
|
|
path=normalized_path)
|
|
normalized_url = urlunparse(normalized_parsed_url)
|
|
|
|
return normalized_url
|
|
|
|
# Normalize both URLs for comparison
|
|
norm_url1 = normalize_url(url1)
|
|
norm_url2 = normalize_url(url2)
|
|
|
|
# Compare the normalized URLs
|
|
return norm_url1 == norm_url2
|
|
|
|
|
|
if __name__ == "__main__":
|
|
path1 = "../../../../../任务数据/LibreOffice Calc/Create_column_charts_using_statistics_gold_line_scatter.xlsx"
|
|
workbook1: Workbook = openpyxl.load_workbook(filename=path1)
|
|
worksheet1: Worksheet = workbook1.active
|
|
charts: List[ChartBase] = worksheet1._charts
|
|
# print(len(charts))
|
|
# print(type(charts[0]))
|
|
#
|
|
# print(len(charts[0].series))
|
|
# print(type(charts[0].series[0]))
|
|
# print(type(charts[0].series[0].val))
|
|
##print(charts[0].series[0].val)
|
|
# print(charts[0].series[0].val.numRef.f)
|
|
#
|
|
# print(type(charts[0].series[0].cat))
|
|
##print(charts[0].series[0].cat)
|
|
# print(charts[0].series[0].cat.numRef)
|
|
# print(charts[0].series[0].cat.strRef)
|
|
# print(charts[0].series[0].cat.strRef.f)
|
|
|
|
# print(type(charts[0].title.tx.strRef))
|
|
# print(type(charts[0].title.tx.rich))
|
|
# print(type(charts[0].title.txPr))
|
|
# print(len(charts[0].title.tx.rich.p))
|
|
# print(len(charts[0].title.tx.rich.p[0].r))
|
|
# print(type(charts[0].title.tx.rich.p[0].r[0]))
|
|
# print(type(charts[0].title.tx.rich.p[0].r[0].t))
|
|
# print(charts[0].title.tx.rich.p[0].r[0].t)
|
|
|
|
# print(type(charts[0].anchor))
|
|
# print(charts[0].anchor.editAs)
|
|
# print(charts[0].anchor._from.col, charts[0].anchor.to.row)
|
|
# print(charts[0].anchor.to.col, charts[0].anchor.to.row)
|
|
|
|
# df1 = pd.read_excel(path1)
|
|
# print(df1)
|
|
print(load_charts(path1, chart_props=["title", "xtitle", "ytitle", "type"]))
|