Files
sci-gui-agent-benchmark/mm_agents/opencua_agent.py
Xinyuan Wang db83b9cb2c Wxy/opencua (#256)
* OpenCUA Agent code base

* update url

* debug, modify url input
2025-07-14 20:26:39 +08:00

726 lines
36 KiB
Python

import base64
from loguru import logger
import re
import time
import math
import httpx
from io import BytesIO
from typing import Dict, List, Tuple, Optional
import backoff
from PIL import Image
import os
AGNET_SYS_PROMPT_L1 = """You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"\", maximize \"\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}""".strip()
AGNET_SYS_PROMPT_L2 = "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nThought:\n - Step by Step Progress Assessment:\n - Analyze completed task parts and their contribution to the overall goal\n - Reflect on potential errors, unexpected results, or obstacles\n - If previous action was incorrect, predict a logical recovery step\n - Next Action Analysis:\n - List possible next actions based on current state\n - Evaluate options considering current state and previous actions\n - Propose most logical next action\n - Anticipate consequences of the proposed action\n - For Text Input Actions:\n - Note current cursor position\n - Consolidate repetitive actions (specify count for multiple keypresses)\n - Describe expected final text outcome\n - Use first-person perspective in reasoning\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"\", maximize \"\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}".strip()
AGNET_SYS_PROMPT_L3 = "You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.\n\nFor each step, provide your response in this format:\n\nObservation:\n - Describe the current computer state based on the full screenshot in detail. \n - Application Context:\n - The active application\n - The active window or page\n - Overall layout and visible interface\n - Key Elements:\n - Menu items and toolbars \n - Buttons and controls\n - Text fields and content\n - Dialog boxes or popups\n - Error messages or notifications\n - Loading states\n - Other key elements\n - Describe any content, elements, options, information or clues that are possibly relevant to achieving the task goal, including their name, content, or shape (if possible).\n\nThought:\n - Step by Step Progress Assessment:\n - Analyze completed task parts and their contribution to the overall goal\n - Reflect on potential errors, unexpected results, or obstacles\n - If previous action was incorrect, predict a logical recovery step\n - Next Action Analysis:\n - List possible next actions based on current state\n - Evaluate options considering current state and previous actions\n - Propose most logical next action\n - Anticipate consequences of the proposed action\n - For Text Input Actions:\n - Note current cursor position\n - Consolidate repetitive actions (specify count for multiple keypresses)\n - Describe expected final text outcome\n - Use first-person perspective in reasoning\n\nAction:\n Provide clear, concise, and actionable instructions:\n - If the action involves interacting with a specific target:\n - Describe target explicitly without using coordinates\n - Specify element names when possible (use original language if non-English)\n - Describe features (shape, color, position) if name unavailable\n - For window control buttons, identify correctly (minimize \"\", maximize \"\", close \"X\")\n - if the action involves keyboard actions like 'press', 'write', 'hotkey':\n - Consolidate repetitive keypresses with count\n - Specify expected text outcome for typing actions\n\nFinally, output the action as PyAutoGUI code or the following functions:\n- {\"name\": \"computer.triple_click\", \"description\": \"Triple click on the screen\", \"parameters\": {\"type\": \"object\", \"properties\": {\"x\": {\"type\": \"number\", \"description\": \"The x coordinate of the triple click\"}, \"y\": {\"type\": \"number\", \"description\": \"The y coordinate of the triple click\"}}, \"required\": [\"x\", \"y\"]}}\n- {\"name\": \"computer.terminate\", \"description\": \"Terminate the current task and report its completion status\", \"parameters\": {\"type\": \"object\", \"properties\": {\"status\": {\"type\": \"string\", \"enum\": [\"success\", \"fail\"], \"description\": \"The status of the task\"}}, \"required\": [\"status\"]}}\n".strip()
AGNET_SYS_PROMPT_L0 = """You are a GUI agent. You are given a task and a screenshot of the screen. You need to perform a series of pyautogui actions to complete the task.
For each step, output the action as PyAutoGUI code or the following functions:
- {"name": "computer.triple_click", "description": "Triple click on the screen", "parameters": {"type": "object", "properties": {"x": {"type": "number", "description": "The x coordinate of the triple click"}, "y": {"type": "number", "description": "The y coordinate of the triple click"}}, "required": ["x", "y"]}}
- {"name": "computer.terminate", "description": "Terminate the current task and report its completion status", "parameters": {"type": "object", "properties": {"status": {"type": "string", "enum": ["success", "failure"], "description": "The status of the task"}}, "required": ["status"]}}
""".strip()
INSTRUTION_TEMPLATE = "# Task Instruction:\n{instruction}\n\nPlease generate the next move according to the screenshot, task instruction and previous steps (if provided).\n"
STEP_TEMPLATE = "# Step {step_num}:\n"
ACTION_HISTORY_TEMPLATE = "## Action:\n{action}\n"
THOUGHT_HISTORY_TEMPLATE = "## Thought:\n{thought}\n\n## Action:\n{action}\n"
OBSERVATION_HISTORY_TEMPLATE = "## Observation:\n{observation}\n\n## Thought:\n{thought}\n\n## Action:\n{action}\n"
DETAIL_HISTORY_TEMPLATE = "## Thought:\n{thought}\n\n## Action:\n{action}\n\n## Code:\n{code}\n"
# Function to encode the image
def encode_image(image_content):
return base64.b64encode(image_content).decode('utf-8')
def parse_response_to_cot_and_action(input_string, screen_size, coordinate_type) -> Tuple[str, List[str], dict]:
"""Parse response including Observation, Thought, Action and code block"""
try:
sections = {}
if "computer.terminate" in input_string.lower():
code_blocks = re.findall(r'```(?:code)?\s*(.*?)\s*```', input_string, re.DOTALL | re.IGNORECASE)
if code_blocks:
last_code = code_blocks[-1].strip().lower()
if "fail" in last_code:
return "FAIL", ["FAIL"], {}
elif "success" in last_code:
return "DONE", ["DONE"], {}
return "DONE", ["DONE"], {}
obs_match = re.search(r'^##\s*Observation\s*:?[\n\r]+(.*?)(?=^##\s*Thought:|^##\s*Action:|^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if obs_match:
sections['observation'] = obs_match.group(1).strip()
# logger.warning(f"Extracted Observation: {sections.get('observation', 'None')}")
thought_match = re.search(r'^##\s*Thought\s*:?[\n\r]+(.*?)(?=^##\s*Action:|^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if thought_match:
sections['thought'] = thought_match.group(1).strip()
# logger.warning(f"Extracted Thought: {sections.get('thought', 'None')}")
action_match = re.search(r'^##\s*Action\s*:?[\n\r]+(.*?)(?=^##|\Z)', input_string, re.DOTALL | re.MULTILINE)
if action_match:
action = action_match.group(1).strip()
sections['action'] = action.strip()
# logger.warning(f"Extracted Action: {sections.get('action', 'None')}")
code_blocks = re.findall(r'```(?:python)?\s*(.*?)\s*```', input_string, re.DOTALL)
if code_blocks:
code = code_blocks[-1].strip()
sections['original_code'] = transform_agnet_action_to_code_block(code)
corrected_code = correct_pyautogui_arguments(code)
sections['code'] = corrected_code
sections['code'] = project_coordinate_to_absolute_scale(corrected_code, screen_width=screen_size[0], screen_height=screen_size[1], coordinate_type=coordinate_type)
# logger.warning(f"Extracted Code: {sections.get('code', 'None')}")
if 'code' not in sections:
logger.error("Missing required action or code section")
return None, None, {}
if 'action' not in sections: # TODO: new added
sections['action'] = ""
return sections['action'], [sections['code']], sections
except Exception as e:
logger.exception(f"Error parsing response: {str(e)}\nInput string: {input_string}")
return None, None, {}
def correct_pyautogui_arguments(code: str) -> str:
function_corrections = {
'write': {
'incorrect_args': ['text', 'content'],
'correct_args': [],
'keyword_arg': 'message'
},
'press': {
'incorrect_args': ['key', 'button'],
'correct_args': [],
'keyword_arg': None
},
'hotkey': {
'incorrect_args': ['key1', 'key2', 'keys'],
'correct_args': [],
'keyword_arg': None
},
}
lines = code.strip().split('\n')
corrected_lines = []
for line in lines:
line = line.strip()
match = re.match(r'(pyautogui\.(\w+))\((.*)\)', line)
if match:
full_func_call = match.group(1)
func_name = match.group(2)
args_str = match.group(3)
if func_name in function_corrections:
func_info = function_corrections[func_name]
args = split_args(args_str)
corrected_args = []
for arg in args:
arg = arg.strip()
kwarg_match = re.match(r'(\w+)\s*=\s*(.*)', arg)
if kwarg_match:
arg_name = kwarg_match.group(1)
arg_value = kwarg_match.group(2)
if arg_name in func_info['incorrect_args']:
if func_info['keyword_arg']:
corrected_args.append(f"{func_info['keyword_arg']}={arg_value}")
else:
corrected_args.append(arg_value)
else:
corrected_args.append(f'{arg_name}={arg_value}')
else:
corrected_args.append(arg)
corrected_args_str = ', '.join(corrected_args)
corrected_line = f'{full_func_call}({corrected_args_str})'
corrected_lines.append(corrected_line)
else:
corrected_lines.append(line)
else:
corrected_lines.append(line)
corrected_code = '\n'.join(corrected_lines)
return corrected_code
def split_args(args_str: str) -> List[str]:
args = []
current_arg = ''
within_string = False
string_char = ''
prev_char = ''
for char in args_str:
if char in ['"', "'"]:
if not within_string:
within_string = True
string_char = char
elif within_string and prev_char != '\\' and char == string_char:
within_string = False
if char == ',' and not within_string:
args.append(current_arg)
current_arg = ''
else:
current_arg += char
prev_char = char
if current_arg:
args.append(current_arg)
return args
def smart_resize(
height: int,
width: int,
factor: int,
min_pixels: int,
max_pixels: int,
max_aspect_ratio_allowed: Optional[float] = None,
size_can_be_smaller_than_factor: bool = False,
):
"""Rescales the image so that the following conditions are met:
1. Both dimensions (height and width) are divisible by 'factor'.
2. The total number of pixels is within the range ['min_pixels', 'max_pixels'].
3. The aspect ratio of the image is maintained as closely as possible.
"""
if not size_can_be_smaller_than_factor and (height < factor or width < factor):
raise ValueError(
f"height:{height} or width:{width} must be larger than factor:{factor} "
f"(when size_can_be_smaller_than_factor is False)"
)
elif max_aspect_ratio_allowed is not None and max(height, width) / min(height, width) > max_aspect_ratio_allowed:
raise ValueError(
f"absolute aspect ratio must be smaller than {max_aspect_ratio_allowed}, "
f"got {max(height, width) / min(height, width)}"
f"(when max_aspect_ratio_allowed is not None)"
)
h_bar = max(1, round(height / factor)) * factor
w_bar = max(1, round(width / factor)) * factor
if h_bar * w_bar > max_pixels:
beta = math.sqrt((height * width) / max_pixels)
h_bar = max(1, math.floor(height / beta / factor)) * factor
w_bar = max(1, math.floor(width / beta / factor)) * factor
elif h_bar * w_bar < min_pixels:
beta = math.sqrt(min_pixels / (height * width))
h_bar = math.ceil(height * beta / factor) * factor
w_bar = math.ceil(width * beta / factor) * factor
return h_bar, w_bar
def _coordinate_projection(x, y, screen_width, screen_height, coordinate_type):
if coordinate_type == "relative":
return int(round(x * screen_width)), int(round(y * screen_height))
elif coordinate_type == "absolute":
return x, y
elif coordinate_type == "qwen25":
if 0 <= x <= 1 and 0 <= y <= 1:
# If already normalized, treat like "relative"
return int(round(x * screen_width)), int(round(y * screen_height))
height, width = smart_resize(
height=screen_height,
width=screen_width,
factor=28,
min_pixels=3136,
max_pixels=12845056
)
return int(x / width * screen_width), int(y / height * screen_height)
elif coordinate_type == "relative1000":
if screen_width == 0 or screen_height == 0:
raise ValueError("Screen width and height must be greater than zero for relative1000 coordinates.")
x_abs = int(round(x * screen_width / 1000))
y_abs = int(round(y * screen_height / 1000))
return x_abs, y_abs
else:
raise ValueError(f"Unsupported coordinate type: {coordinate_type}")
def project_coordinate_to_absolute_scale(pyautogui_code_relative_coordinates, screen_width, screen_height, coordinate_type="relative"):
"""
Convert the relative coordinates in the pyautogui code to absolute coordinates based on the logical screen size.
"""
import re
import ast
if coordinate_type not in ["relative", "relative1000", "absolute", "qwen25"]:
raise ValueError(f"Invalid coordinate type: {coordinate_type}. Expected one of ['relative', 'relative1000', 'absolute', 'qwen25'].")
pattern = r'(pyautogui\.\w+\([^\)]*\))'
matches = re.findall(pattern, pyautogui_code_relative_coordinates)
new_code = pyautogui_code_relative_coordinates
for full_call in matches:
func_name_pattern = r'(pyautogui\.\w+)\((.*)\)'
func_match = re.match(func_name_pattern, full_call, re.DOTALL)
if not func_match:
continue
func_name = func_match.group(1)
args_str = func_match.group(2)
try:
parsed = ast.parse(f"func({args_str})").body[0].value
parsed_args = parsed.args
parsed_keywords = parsed.keywords
except SyntaxError:
return pyautogui_code_relative_coordinates
function_parameters = {
'click': ['x', 'y', 'clicks', 'interval', 'button', 'duration', 'pause'],
'moveTo': ['x', 'y', 'duration', 'tween', 'pause'],
'moveRel': ['xOffset', 'yOffset', 'duration', 'tween', 'pause'],
'dragTo': ['x', 'y', 'duration', 'button', 'mouseDownUp', 'pause'],
'dragRel': ['xOffset', 'yOffset', 'duration', 'button', 'mouseDownUp', 'pause'],
'doubleClick': ['x', 'y', 'interval', 'button', 'duration', 'pause'],
}
func_base_name = func_name.split('.')[-1]
param_names = function_parameters.get(func_base_name, [])
args = {}
for idx, arg in enumerate(parsed_args):
if idx < len(param_names):
param_name = param_names[idx]
arg_value = ast.literal_eval(arg)
args[param_name] = arg_value
try:
for kw in parsed_keywords:
param_name = kw.arg
arg_value = ast.literal_eval(kw.value)
args[param_name] = arg_value
except Exception as e:
logger.error(f"Error parsing keyword arguments: {e}")
return pyautogui_code_relative_coordinates
updated = False
if 'x' in args and 'y' in args:
try:
x_rel = float(args['x'])
y_rel = float(args['y'])
x_abs, y_abs = _coordinate_projection(x_rel, y_rel, screen_width, screen_height, coordinate_type)
logger.warning(f"Projecting coordinates: ({x_rel}, {y_rel}) to ({x_abs}, {y_abs}) using {coordinate_type} projection.")
args['x'] = x_abs
args['y'] = y_abs
updated = True
except ValueError:
pass
if 'xOffset' in args and 'yOffset' in args:
try:
x_rel = float(args['xOffset'])
y_rel = float(args['yOffset'])
x_abs, y_abs = _coordinate_projection(x_rel, y_rel, screen_width, screen_height, coordinate_type)
args['xOffset'] = x_abs
args['yOffset'] = y_abs
updated = True
except ValueError:
pass
if updated:
reconstructed_args = []
for idx, param_name in enumerate(param_names):
if param_name in args:
arg_value = args[param_name]
if isinstance(arg_value, str):
arg_repr = f"'{arg_value}'"
else:
arg_repr = str(arg_value)
reconstructed_args.append(arg_repr)
else:
break
used_params = set(param_names[:len(reconstructed_args)])
for kw in parsed_keywords:
if kw.arg not in used_params:
arg_value = args[kw.arg]
if isinstance(arg_value, str):
arg_repr = f"{kw.arg}='{arg_value}'"
else:
arg_repr = f"{kw.arg}={arg_value}"
reconstructed_args.append(arg_repr)
new_args_str = ', '.join(reconstructed_args)
new_full_call = f"{func_name}({new_args_str})"
new_code = new_code.replace(full_call, new_full_call)
return new_code
def extract_positions_and_instructions(code, action) -> list[dict]:
"""
Extracts all `(x, y)` coordinates (both positional and keyword arguments)
and their associated preceding comments as instructions from Python code.
If there are no comments, use the corresponding action instead.
Args:
code (str): The Python code as a string.
action (str): The low-level action as a string.
Returns:
list[dict]: A list of dictionaries with extracted positions and instructions.
- function (str): The pyautogui function name.
- x (int or float): The x-coordinate.
- y (int or float): The y-coordinate.
- instruction (str): The preceding comment as an instruction.
"""
lines = code.splitlines()
extracted = []
preceding_comment = action # To store the preceding comment
for line in lines:
preceding_comment = action
# Check if the line is a comment and store it
if line.strip().startswith("#"):
preceding_comment = line.strip().lstrip("#").strip() # Clean the comment
# Match pyautogui functions with positional arguments
match_positional = re.match(r"(pyautogui\.\w+)\((\d+(\.\d+)?),\s*(\d+(\.\d+)?).*?\)", line)
if match_positional:
extracted.append({
"function": match_positional.group(1), # pyautogui function name
"x": float(match_positional.group(2)) if '.' in match_positional.group(2)\
else int(match_positional.group(2)), # x-coordinate
"y": float(match_positional.group(4)) if '.' in match_positional.group(4)\
else int(match_positional.group(3)), # y-coordinate
"instruction": preceding_comment, # Use the preceding comment
})
preceding_comment = None # Reset after associating it with a line
continue
# Match pyautogui functions with keyword arguments
match_keyword = re.match(r"(pyautogui\.\w+)\(.*?x=(\d+(\.\d+)?),\s*y=(\d+(\.\d+)?).*?\)", line)
if match_keyword:
extracted.append({
"function": match_keyword.group(1), # pyautogui function name
"x": float(match_keyword.group(2)) if '.' in match_keyword.group(2)\
else int(match_keyword.group(2)), # x-coordinate
"y": float(match_keyword.group(4)) if '.' in match_keyword.group(4)\
else int(match_keyword.group(3)), # y-coordinate
"instruction": preceding_comment, # Use the preceding comment
})
preceding_comment = None # Reset after associating it with a line
logger.info(f"Grounding extracted:\n{extracted}")
return extracted
def update_code_with_new_coordinates(code, updated_positions):
"""
Replaces old `(x, y)` coordinates (both positional and keyword arguments)
with updated ones in the code, handling multiple occurrences correctly.
Args:
code (str): The original Python code as a string.
updated_positions (list): A list of dictionaries with updated positions.
Returns:
str: The updated Python code.
"""
# TODO: the matching logics in 'update_code_with_new_coordinates'
# and 'extract_positions_and_instructions' are not exactly the same
lines = code.splitlines()
updated_code_lines = []
position_index = 0 # Tracks which position update to use
for line in lines:
if position_index < len(updated_positions):
# Get the next update position
update = updated_positions[position_index]
function_pattern_positional = rf"{update['function']}\(\d+(\.\d+)?, \d+(\.\d+)?"
function_pattern_keyword = rf"{update['function']}\(.*?x=\d+(\.\d+)?, y=\d+(\.\d+)?"
if re.search(function_pattern_positional, line):
# Replace positional arguments
line = re.sub(
function_pattern_positional,
f"{update['function']}({update['x']}, {update['y']}",
line,
count=1
)
position_index += 1 # Move to the next update
elif re.search(function_pattern_keyword, line):
# Replace keyword arguments
line = re.sub(
function_pattern_keyword,
f"{update['function']}(x={update['x']}, y={update['y']}",
line,
count=1
)
position_index += 1 # Move to the next update
updated_code_lines.append(line)
return "\n".join(updated_code_lines)
def transform_agnet_action_to_code_block(action):
if "computer.terminate" in action or "browser.select_option" in action or "browser.clear" in action:
return f"```code\n{action}\n```"
else:
return f"```python\n{action}\n```"
class OpenCUAAgent:
def __init__(
self,
model,
history_type: str,
max_image_history_length: int,
platform="ubuntu",
max_tokens=1500,
top_p=0.9,
temperature=0,
action_space="pyautogui",
observation_type="screenshot",
cot_level: str = "l2",
screen_size=(1920, 1080),
coordinate_type: str = "relative", # relative or qwen25
detail_history_length: int = 0,
**kwargs
):
self.platform = platform
self.model = model
assert self.model is not None, "Executor model cannot be None"
self.max_tokens = max_tokens
self.top_p = top_p
self.temperature = temperature
self.action_space = action_space
self.observation_type = observation_type
self.history_type = history_type
self.coordinate_type = coordinate_type
assert coordinate_type in ["relative", "relative1000", "absolute", "qwen25"]
assert action_space in ["pyautogui"], "Invalid action space"
assert observation_type in ["screenshot"], "Invalid observation type"
assert history_type in ["action_history", "thought_history", "observation_history"]
self.actions = []
self.observations = []
self.cots = []
self.cot_level = cot_level
self.screen_size = screen_size
self.max_image_history_length = max_image_history_length
self.detail_history_length = detail_history_length
if history_type == "action_history":
self.HISTORY_TEMPLATE = ACTION_HISTORY_TEMPLATE
elif history_type == "thought_history":
self.HISTORY_TEMPLATE = THOUGHT_HISTORY_TEMPLATE
elif history_type == "observation_history":
self.HISTORY_TEMPLATE = OBSERVATION_HISTORY_TEMPLATE
else:
raise ValueError(f"Invalid history type: {history_type}")
def reset(self, _logger=None):
global logger
logger = _logger if _logger is not None else logging.getLogger("desktopenv.agent")
self.observations = []
self.thoughts = []
self.actions = []
self.image_summaries = []
def _scale_scroll_for_windows(self, code: str, factor: int = 50) -> str:
""" pyautogui.scroll has a different scale on Ubuntu and Windows, multiple 'factor' when scrolling on Windows system"""
if self.platform.lower() != "windows":
return code
pattern_pos = re.compile(r'(pyautogui\.scroll\()\s*([-+]?\d+)\s*\)')
code = pattern_pos.sub(lambda m: f"{m.group(1)}{int(m.group(2))*factor})", code)
return code
def predict(self, instruction: str, obs: Dict, **kwargs) -> List:
"""
Predict the next action(s) based on the current observation.
"""
if "step_idx" in kwargs:
logger.info(f"========= {self.model} Step {kwargs['step_idx']} =======")
else:
logger.info(f"========================== {self.model} ===================================")
logger.info(f"Instruction: \n{instruction}")
image_bytes = BytesIO(obs['screenshot'])
with Image.open(image_bytes) as img:
print("Actual screen size", img.size)
print("Logical screen size", self.screen_size)
messages = []
if self.cot_level == "l3":
messages.append({
"role": "system",
"content": AGNET_SYS_PROMPT_L3
})
elif self.cot_level == "l2":
messages.append({
"role": "system",
"content": AGNET_SYS_PROMPT_L2
})
elif self.cot_level == "l1":
messages.append({
"role": "system",
"content": AGNET_SYS_PROMPT_L1
})
elif self.cot_level == "l0":
messages.append({
"role": "system",
"content": AGNET_SYS_PROMPT_L0
})
else:
raise ValueError(f"Invalid COT level: {self.cot_level}")
instruction_prompt = INSTRUTION_TEMPLATE.format(instruction=instruction)
history_step_texts = []
for i in range(len(self.actions)):
if i > len(self.actions) - self.max_image_history_length:
messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{encode_image(self.observations[i]['screenshot'])}"}
}
]
})
if self.detail_history_length > 0 and i >= len(self.actions) - self.detail_history_length:
history_content = STEP_TEMPLATE.format(step_num=i+1) + DETAIL_HISTORY_TEMPLATE.format(
observation=self.cots[i].get('observation'),
thought=self.cots[i].get('thought'),
action=self.cots[i]['action'],
code=self.cots[i]['original_code']
)
else:
history_content = STEP_TEMPLATE.format(step_num=i+1) + self.HISTORY_TEMPLATE.format(
observation=self.cots[i].get('observation'),
thought=self.cots[i].get('thought'),
action=self.cots[i]['action']
)
messages.append({
"role": "assistant",
"content": history_content
})
else:
history_content = STEP_TEMPLATE.format(step_num=i+1) + self.HISTORY_TEMPLATE.format(
observation=self.cots[i].get('observation'),
thought=self.cots[i].get('thought'),
action=self.cots[i]['action']
)
history_step_texts.append(history_content)
if i == len(self.actions) - self.max_image_history_length:
messages.append({
"role":"assistant",
"content": "\n".join(history_step_texts)
})
messages.append({
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {"url": f"data:image/png;base64,{encode_image(obs['screenshot'])}"}
},
{
"type": "text",
"text": instruction_prompt
}
]
})
# Print message structure if needed
# logger.info("\nMessages structure:")
# messages_to_print = []
# current_image = 1
# for msg in messages:
# msg_copy = copy.deepcopy(msg)
# if isinstance(msg_copy['content'], list):
# for content in msg_copy['content']:
# if content['type'] == 'image_url':
# content['image_url']['url'] = f'Image {current_image}'
# current_image += 1
# messages_to_print.append(msg_copy)
# logger.info(json.dumps(messages_to_print, indent=2))
response = self.call_llm({
"model": self.model,
"messages": messages,
"max_tokens": self.max_tokens,
"top_p": self.top_p,
"temperature": self.temperature
}, self.model)
logger.info(f"Model Output: \n\n{response}")
if not response:
logger.error("No response found in the response.")
return response, [], {}
low_level_instruction, pyautogui_actions, other_cot = parse_response_to_cot_and_action(response, self.screen_size, self.coordinate_type)
if not pyautogui_actions:
logger.error("No pyautogui actions found in the response.")
return response, [], {}
pyautogui_actions = [
self._scale_scroll_for_windows(code) for code in pyautogui_actions
]
self.observations.append(obs)
logger.info(f"Parsed Low-level Action: \n{low_level_instruction}")
logger.info(f"Parsed pyautogui Action: \n{pyautogui_actions}")
self.actions.append(low_level_instruction)
self.cots.append(other_cot)
return response, pyautogui_actions, {}
# return response, [parsed_action]
@backoff.on_exception(
backoff.constant,
# here you should add more model exceptions as you want,
# but you are forbidden to add "Exception", that is, a common type of exception
# because we want to catch this kind of Exception in the outside to ensure
# each example won't exceed the time limit
(
Exception
),
interval=30,
max_tries=10
)
def call_llm(self, payload, model):
headers = {
"Content-Type": "application/json",
"Authorization": f"Bearer {os.environ['OPENCUA_API_KEY']}"
}
for _ in range(30):
response = httpx.post(
os.environ['OPENCUA_URL'],
headers=headers,
json=payload,
timeout=500,
verify=False
)
if response.status_code != 200:
logger.error("Failed to call LLM: " + response.text)
logger.error("Retrying...")
time.sleep(5)
else:
return response.json()['choices'][0]['message']['content']